Polyphony and monophony in instruments

From Wikipedia, the free encyclopedia
  (Redirected from Polyphony (instrument))
Jump to: navigation, search

Polyphony is a property of musical instruments, meaning they can play multiple notes simultaneously. Instruments featuring polyphony are said to be polyphonic. Instruments that are not capable of polyphony are monophonic or paraphonic.


Typical monophonic synthesizer: Moog Minimoog
Typical duophonic synthesizer: ARP Odyssey
See also: Synthesizer


A monophonic synthesizer or monosynth is a synthesizer that produces only one note at a time, making it smaller and cheaper than a polyphonic synthesizer which can play multiple notes at once. This does not neccessarily refer to a synthesizer with a single oscillator; The Minimoog, for example, has three oscillators which are settable in arbitrary intervals, but it can play only one note at a time.

Well-known monosynths include the Minimoog, the Roland TB-303, and the Korg Prophecy.


Duophonic synthesizers, such as the ARP Odyssey and Formanta Polivoks built in the 1970s and 1980s respectively, have a capability to independently play two pitches at a time. These synthesizers have at least two oscillators that are separately controllable, and a duophonic keyboard that can generate two control voltage signals for the lowest- and highest-note. When two or more keys are pressed simultaneously, the lowest- and highest-note will be heard. When only one key is pressed, both oscillators are assigned to one note, possibly with a more complex sound.


The earliest polyphonic synthesizers were built in the late-1930s, but the concept did not become popular until the mid-1970s. Harald Bode's “Warbo Formant Orguel”, developed in 1937, was an archetype of a voice allocation polyphonic synthesizer.[1] Novachord by Hammond Organ Company, released in 1939, is a forefather product of frequency divider organs and polyphonic synthesizer. It uses octave divider technology to generate polyphony,[2] and about 1,000 Novachords were manufactured until 1942.[3]

Synths using octave divider[edit]

Using an octave divider a synthesizer needs only 12 oscillators - one for each note in the musical scale. The additional notes are generated by dividing down the outputs of these oscillators. To produce a note one octave below, the output of the oscillator is divided by two. Polyphony is achieved so long as only one of each note in the scale is played simultaneously.[4]

Novachord frontS.jpg Moog Polymoog Synthesizer.jpg Korg PE-1000 (Univox K4).jpg Korg PS-3300.JPG
Hammond Novachord (1939)
A forefather of octave divider synth and electronic organs.
Moog Polymoog (1975)
Octave divider technology similar to Novachord was used.
Korg PE-1000 (1976)
Polyphonic ensemble keyboard consists with one synth per key (totally 60 synthesizers).
Korg PS-3300 (1977)
Although it uses octave divider, it contains three synths per key.

Synths using voice allocation[edit]

In the early 1970s, Allen Organ Company, E-mu Systems and Yamaha independently developed digital keyboard scanning and voice allocation technology, and the results were known as Oberheim 2/4/8-voices licensed by E-mu Systems[5] and Yamaha GX-1.

Yamaha GX-1 (clip) @ Yamaha Design Masterworks.png E-mu Modular System @ Cantos.jpg Oberheim 4 voice.jpg Sequential Circuits Prophet 5.jpg
Yamaha GX1 (1973)
Voice allocation technology was used to assign limited 8-voices per manual into notes.
E-mu Modular System (1972)
In 1974, E-mu released polyphonic keyboards for it.[5]
Oberheim 4voice (1975)
Polyphonic technology was licensed by E-mu Systems.[5]
Sequential Circuits Prophet-5 (1978) is one of the most popular polyphonic synth featuring patch memories, also used E-mu's technology.[5]

Number of voices[edit]

One notable early polyphonic synthesizer was the Sequential Circuits Prophet 5, which was released in 1978 and had five-voice polyphony. Six-voice polyphony was standard by the middle 1980s. With the advent of digital synthesizers, 16-voice polyphony became standard by the late 1980s. 64-voice polyphony was common by the middle 1990s and 128-note polyphony arrived shortly after. There are several reasons for providing such large numbers of simultaneous notes:

  • Even with only ten fingers, it is possible to play more than ten notes at once. Notes may continue to sound even after a key is released. The synthesizer's resources may still be in use to produce the sound of the previously struck notes tapering off, especially when a sustain pedal is used.
  • A "sound" (also called a "timbre" or "patch") may be generated by more than one oscillator or sound-source to allow more complicated sounds to be produced. A synthesizer with 16 oscillators may be capable of 16-note polyphony only when simple, single-oscillator sounds are produced. If a particular patch requires four oscillators, then the synthesizer is only capable of four-note polyphony.
  • Synthesizers may be configured to produce multiple timbres (multitimbral), particularly necessary when sounds are layered or sequenced. Multitimbral instruments are always polyphonic but polyphonic instruments are not necessarily multitimbral. Some multitimbral instruments have a feature which allows the user to specify the amount of polyphony reserved or allowed for each timbre.

Note priority of synthesizer[edit]

Synthesizers generally use oscillators to generate the electric signal that forms the basis of the sound, often with a keyboard to trigger the oscillators. However multiple oscillators working independently are a considerable challenge to implement. To double the polyphony, not only must the number of oscillators be doubled but the electronics must also function as a switch connecting keys to free oscillators instantaneously, implementing an algorithm that decides which notes are turned off if the maximum number of notes is already sounding when an additional key is pressed. There are several ways to implement this:

  • Turn off the first note sounded and use the newly freed oscillator to play the new note. With last note priority, priority is based on the order in which keys are played. When new notes are triggered while all voices are playing, the synthesizer frees up polyphony by ending the earliest played sounding note. This is the default mode on most synthesizers.
  • Turn off the last note sounded and use the newly freed oscillator to play the new note
  • Ignore the newly depressed note. With first note priority, earlier notes are not cut off to make room for later ones, and once maximum polyphony has been reached, the person playing the instrument must stop playing one or more notes in order to trigger new ones.
  • In highest note priority, new notes that are higher in pitch than ones being already played replace currently playing notes from the lowest on up.
  • Lowest note priority works in the same way, but cuts notes from the highest down.

Modern synthesizers and samplers may use additional, multiple and/or user-configurable criteria to decide which notes sound.

Inside of an acoustic piano
Each key on an acoustic piano is connected to its own hammer-and-string sound-producing mechanism.

Other instruments[edit]

Keyboard instruments[edit]

Acoustic keyboard instruments[edit]

Almost all classical keyboard instruments are polyphonic. Examples include the piano, harpsichord, organ and clavichord. These instruments feature a complete sound-generating mechanism for each key in the keybed (e.g., a piano has a string and hammer for every key, and an organ has at least one pipe for each key.) When any key is pressed, the note corresponding to that key will be heard as the mechanism is activated.

Some clavichords do not have a string for each key. Instead, they will have a single string which will be fretted by several different keys. Out of the keys that share a single string, only one may sound at a time.

Electric keyboard instruments[edit]

The electric piano and clavinet rely on the same principles to achieve polyphonic operation. An electric piano has a separate hammer, vibrating metal tine and electrical pickup for each key.

With a few exceptions, electric organs consist of two parts: an audio-generating system and a mixing system. The audio-generating system may be electronic (consisting of oscillators and octave dividers) or it may be electromechanical (consisting of tonewheels and pickups), and it sends a large number of audio outputs to a mixer. The stops or drawbars on the organ modify the signal sent from the audio-generating system, and the keyboard switches the mixer's channels on and off. Those channels which are switched on are heard as notes corresponding to the depressed keys.

Stringed instruments[edit]

Classical instruments[edit]

In classical music, a definition of polyphony does not only mean just playing multiple notes at once but an ability to make audiences perceive multiple lines of melodies. Playing multiple notes as a whole such a rhythm from a chord pattern is not polyphony but homophony. Therefore, polyphony in classical music is a technique to describe clavier ways of using a less number of sources to produce a more number of sounds rather than just increasing a new mechanical to produce notes in new instruments which is not efficient as a sound perception of human has its limitation to tracking multiple sources (auditory scene analysis and lossy compression such as mp3 might explain this phenomenon) and usually associated with counter point theory. Moreover, the sounds generate by instruments does not have only notes and dynamics but tone colors. Some instruments produce more tone colors via even a single note but some play multiples notes with less variations of the tone colors. Some instruments can give clear variations of articulations than others but some do not. Thus, classical polyphony cannot directly be considered by just a number of simultaneously playing notes.
Stringed instruments may be polyphonic if they have a separate string for each note to be played; also, if they are played with the fingers such as guitar and violin, the polyphony can have greater rhythmic independence but limit by a mechanical of these instruments to produce all dimensions of good quality sounds. The harp has a large number of strings, one for each note in the scale, and it is played with all ten fingers, so it is polyphonic; the guitar has multiple strings, is usually chorded and not played one string at a time, so it is polyphonic; The classical guitar music are also composed to have effects of multiple-note perception even though these notes are not play at the same time but repeatedly in the right pattern and speed. This is a good example for the meaning of polyphonic in classical style playing.
A classical violin has multiple strings and indeed is polyphonic but harder for some beginners to play multiple strings by bowing within a month of the first-time training because of two factors: there is no fret making one to learn more basic musical theory including accurately fingering techniques to know the right notes to play and there is only one bow covering from one to four strings simultaneously. One needs to control the pressure, speed and angle well for one note before having an ability to play the multiple notes at acceptable quality expected by the composers. This normally takes year or so. Thus, the violin family of instruments are misleadingly considered (when bowing) by general untrained musicians to be primarily monophonic. However, it can be polyphony by both pizzicato (picking) and bowing techniques for standard trained soloists and orchestra players. The evidence can be seen in compositions since 17th century such as Bach sonatas and partitas for unaccompaniment solo violin which some movements such as the Chaconne (the 5th of second partita in D minor) of these considered to be very hard for other instruments also. Many violin virtuosi often compose music using multiple notes on a single instrument in their showpieces. Additionally, guitarre (play by picking like a guitar) can be another extended technique for polyphonic producing tone of these instruments.
One might think that the multiple notes playing on a single acoustic violin should produce the same feeling as by an acoustic guitar but oppositely the sound is often more similar to electrical guitar chord leading to less usual to play the violin chord in a rhythm part for sweet popular songs. Drones which are types of harmonic sustain notes (long harmonic notes) are more usual in non-classical music than chords. Apart from playing all simultaneous notes directly, successively playing double stopping could lead to guitar chord feeling and a perceptually more notes can be done via multiple stopping followed by changing the last notes at the same bow which cannot achieve the same effect when playing with some keyboard instruments as they will break the sounds (however, the keyboard instruments can have other effects considered non-producible by neither guitar or violin). Both of these can be seen in many music by Niccolo Paganini.
Some non-mainstream classical instruments include strings which are fretted and plucked like those on a guitar, plus secondary strings which resonate and provide reverberation on a few key notes. When playing a single note, it is technically not polyphony, but it can be used to simulate polyphony. However, when playing multiple notes, it is physically polyphony.

Newer instruments[edit]

The electric guitar, just like the classical guitar, is polyphonic, as are various guitar derivatives (including the harpejji and the Chapman stick).

Wind instruments[edit]

Multiphonics can be used with many regular wind instruments to produce two or more notes at once, although this is considered an extended technique. Explicitly polyphonic wind instruments are relatively rare, but do exist.

The standard harmonica can easily produce several notes at once.

Multichambered ocarinas are manufactured in a number of varieties, including double, triple, and quadruple ocarinas, which use multiple chambers to extend the ocarina's otherwise limited range, but also enable the musician to play more than one note simultaneously. Harmonic ocarinas are specifically designed for polyphony, and in these instruments the range of the chambers usually overlap to some extent (typically at the unison, third, fourth, fifth, seventh or octave). Cross-fingering enables a single chamber to span an entire octave or more.

Recorders can also be doubled for polyphony. There are two types of double recorder; drone and polyphonic. In the drone type, one tube is tuned exactly like a regular recorder with a range of approximately two octaves, and the other tube is a drone and plays the tonic note of the scale. The polyphonic recorder has two tubes with a range of one major sixth. With overblowing, some notes can be played an octave higher, but it is not possible to achieve the range of an entire octave in one tube with these instruments.

Double Zhaleikas (a type of hornpipe) also exist, native to southern Russia.

See also[edit]

Formal classification system


  1. ^ Tom Rhea (2004). "Harald Bode biography". New York: Experimental Television Center Ltd. Archived from the original on 2011-07-19.  (also broken format page is remained here)
  2. ^ "Novachord Schematics". novachord.com. 
  3. ^ "Introduction to the Hammond Novachord". novachord.com. 
  4. ^ Gordon Reid. "Synth secrets, part 21". Sound on Sound (January 2001). 
  5. ^ a b c d "The History Of Emu Systems". 30 Years of Gears. MIT Media Lab.