Postage stamp problem

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The postage stamp problem is a mathematical riddle that asks what is the smallest postage value which cannot be placed on an envelope, if the latter can hold only a limited number of stamps, and these may only have certain specified face values.[1]

For example, suppose the envelope can hold only three stamps, and the available stamp values are 1 cent, 2 cents, 5 cents, and 20 cents. Then the solution is 13 cents; since any smaller value can be obtained with at most three stamps (e.g. 4 = 2 + 2, 8 = 5 + 2 + 1, etc.), but to get 13 cents one must use at least four stamps.

Mathematical definition[edit]

Mathematically, the problem can be formulated as follows:

Given an integer m and a set V of positive integers, find the smallest integer z that cannot be written as the sum of m terms v1 + v2 + ··· + vm, not necessarily distinct, all of them belonging to V.

Complexity[edit]

This problem can be solved by brute force search or backtracking with maximum time proportional to |V|m, where |V| is the number of distinct stamp values allowed. Therefore, if the capacity of the envelope m is fixed, it is a polynomial time problem. If the capacity m is arbitrary, the problem is known to be NP-hard.[1]

See also[edit]

References[edit]

  1. ^ a b Jeffrey Shallit (2001), The computational complexity of the local postage stamp problem. SIGACT News 33 (1) (March 2002), 90-94. Accessed on 2009-12-30.

External links[edit]