Acrolein

From Wikipedia, the free encyclopedia
  (Redirected from Propenal)
Jump to: navigation, search
Not to be confused with Propanol or Propanal. ‹See Tfd›
Acrolein
Propenal.svg Acrolein-3D-balls.png
Acrolein-3D-vdW.png
Identifiers
CAS number 107-02-8 YesY
PubChem 7847
ChemSpider 7559 YesY
UNII 7864XYD3JJ YesY
KEGG C01471 YesY
ChEBI CHEBI:15368 YesY
ChEMBL CHEMBL721 YesY
IUPHAR ligand 2418
Jmol-3D images Image 1
Image 2
Properties
Molecular formula C3H4O
Molar mass 56.06 g mol−1
Appearance Colorless to yellow liquid. Colorless gas in smoke.
Odor irritating
Density 0.839 g/mL
Melting point −88 °C (−126 °F; 185 K)
Boiling point 53 °C (127 °F; 326 K)
Solubility in water very soluble
Hazards
MSDS JT Baker MSDS
Main hazards Highly poisonous. Causes severe irritation to exposed membranes. Extremely flammable liquid and vapor.
NFPA 704
Flammability code 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g., gasoline) Health code 4: Very short exposure could cause death or major residual injury. E.g., VX gas Reactivity code 3: Capable of detonation or explosive decomposition but requires a strong initiating source, must be heated under confinement before initiation, reacts explosively with water, or will detonate if severely shocked. E.g., fluorine Special hazards (white): no codeNFPA 704 four-colored diamond
Flash point −26 °C (−15 °F; 247 K)
Explosive limits 3-31%
Related compounds
Related alkenals Crotonaldehyde

cis-3-Hexenal
(E,E)-2,4-Decadienal

Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 YesY (verify) (what is: YesY/N?)
Infobox references

Acrolein (systematic name: propenal) is the simplest unsaturated aldehyde. It is a colourless liquid with a piercing, disagreeable, acrid smell. The smell of burnt fat (as when cooking oil is heated to its smoke point) is caused by glycerol in the burning fat breaking down into acrolein. It is produced industrially from propylene and mainly used as a biocide and a building block to other chemical compounds, such as the amino acid methionine.

Production[edit]

Acrolein is prepared industrially by oxidation of propene. The process uses air as the source of oxygen and requires metal oxides as heterogeneous catalysts:[1]

CH2=CHCH3 + O2 → CH2=CHCHO + H2O

About 500,000 tons of acrolein are produced in this way annually in North America, Europe, and Japan. Additionally, all acrylic acid is produced via the transient formation of acrolein. The main challenge is in fact the competing over oxidation to this acid. Propane represents a promising but challenging feedstock for the synthesis of acrolein (and acrylic acid).

When glycerol (also called glycerin) is heated to 280 °C, it decomposes into acrolein. This route is attractive when glycerol is cogenerated in the production of biodiesel from fatty acids. The dehydration of glycerol has been demonstrated but has not proven competitive with the route from petrochemicals.[2]

Niche or laboratory methods[edit]

The original industrial route to acrolein, developed by Degussa, involves condensation of formaldehyde and acetaldehyde. Acrolein may also be produced on lab scale by the reaction of potassium bisulfate on glycerol (glycerine).[3]

Reactions[edit]

Acrolein is a relatively electrophilic compound and a reactive one, hence its high toxicity. It is a good Michael acceptor, hence its useful reaction with thiols. It forms acetals readily, a prominent one being the spirocycle derived from pentaerythritol, diallylidene pentaerythritol. Acrolein participates in many Diels-Alder reactions, even with itself. Via Diels-Alder reactions, it is a precursor to some commercial fragrances, including lyral, norbornene-2-carboxaldehyde, and myrac aldehyde.[1]

Uses[edit]

Biocide[edit]

Acrolein is mainly used as a contact herbicide to control submersed and floating weeds, as well as algae, in irrigation canals. It is used at a level of 10 ppm in irrigation and recirculating waters. In the oil and gas industry, it is used as a biocide in drilling waters, as well as a scavenger for hydrogen sulfide and mercaptans.[1]

Chemical precursor[edit]

A number of useful compounds are made from acrolein, exploiting its bifunctionality. The amino acid methionine is produced by addition of methanethiol followed by the Strecker synthesis. Acrolein condenses with acetaldehyde and amines to give methylpyridines. It is also thought to be an intermediate in the Skraup synthesis of quinolines, but is rarely used as such due to its instability.

Acrolein will polymerize in the presence of oxygen and in water at concentrations above 22%. The color and texture of the polymer depends on the conditions. Over time, it will polymerize with itself to form a clear, yellow solid. In water, it will form a hard, porous plastic.

Acrolein is sometimes used as a fixative in preparation of biological specimens for electron microscopy.[4]

Health risks[edit]

Acrolein is toxic and is a strong irritant for the skin, eyes, and nasal passages.[1] The main metabolic pathway for acrolein is the alkylation of glutathione. The WHO suggests a "tolerable oral acrolein intake" of 7.5 μg/day per kilogram of body weight. Although acrolein occurs in French fries, the levels are only a few micrograms per kilogram.[5] In response to occupational exposures to acrolein, the US Occupational Safety and Health Administration has set a permissible exposure limit at 0.1 ppm (0.25 mg/m3) at an eight-hour time-weighted average.[6]

Cigarette smoke[edit]

Connections exist between acrolein gas in the smoke from tobacco cigarettes and the risk of lung cancer.[7] In terms of the "noncarcinogenic health quotient" for components in cigarette smoke, acrolein dominates, contributing 40 times more than the next component, hydrogen cyanide.[8]

Chemotherapy metabolite[edit]

Cyclophosphomide and Ifosfamide treatment results in the production of acrolein.[9] Acrolein produced during cyclophosphamide treatment collects in the urinary bladder and if untreated can cause hemorrhagic cystitis.

Analytical methods[edit]

The "acrolein test" is for the presence of glycerin or fats. A sample is heated with potassium bisulfate, and acrolein is released if the test is positive. When a fat is heated strongly in the presence of a dehydrating agent such as potassium bisulfate (KHSO
4
), the glycerol portion of the molecule is dehydrated to form the unsaturated aldehyde, acrolein (CH2=CH–CHO), which has the odor peculiar to burnt cooking grease. More modern methods exist.[5]

In the US, EPA method 603 is designed to measure acrolein in industrial and municipal wastewater streams.[10]

References[edit]

  1. ^ a b c d Dietrich Arntz, Achim Fischer, Mathias Höpp, Sylvia Jacobi, Jörg Sauer, Takashi Ohara, Takahisa Sato, Noboru Shimizu and Helmut Schwind "Acrolein and Methacrolein" in Ullmann's Encyclopedia of Industrial Chemistry, 2012, Wiley-VCH, Weinheim. doi:10.1002/14356007.a01_149.pub2
  2. ^ Andreas Martin, Udo Armbruster, Hanan Atia "Recent developments in dehydration of glycerol toward acrolein over heteropolyacids" European Journal of Lipid Science and Technology 2012, Volume 114, pages 10–23. doi:10.1002/ejlt.201100047
  3. ^ Homer Adkins and W. H. Hartung (1941), "Acrolein", Org. Synth. ; Coll. Vol. 1: 15 
  4. ^ M J Dykstra, L E Reuss (2003) Biological Electron Microscopy: Theory, Techniques, and Troubleshooting. Springer, ISBN 0-306-47749-1, ISBN 978-0-306-47749-2.
  5. ^ a b Klaus Abraham, Susanne Andres, Richard Palavinskas, Katharina Berg, Klaus E. Appel, Alfonso Lampen "Toxicology and risk assessment of acrolein in food" Mol. Nutr. Food Res. 2011, vol. 55, pp. 1277–1290. doi:10.1002/mnfr.201100481
  6. ^ CDC - NIOSH Pocket Guide to Chemical Hazards
  7. ^ Feng, Z; Hu W; Hu Y; Tang M (October 2006). "Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair". Proceedings of the National Academy of Sciences 103 (42): 15404–15409. Bibcode:2006PNAS..10315404F. doi:10.1073/pnas.0607031103. PMC 1592536. PMID 17030796. 
  8. ^ Hans-Juergen Haussmann, "Use of Hazard Indices for a Theoretical Evaluation of Cigarette Smoke Composition" Chem. Res. Toxicol., 2012, vol. 25, pp 794–810. doi:10.1021/tx200536w
  9. ^ Faci, A coauthors = Rieutord A, Guillaume, Tracne F, Ropenge J, Husson HP, Brion F. (March 2000). "Quantitative high-performance liquid chromatography chromatographic determination of acrolein in plasma after derivatization with Luminarin 3". Journal of chromatography B: biomedical sciences and applications volume = 739, issue = 2: 239–246. 
  10. ^ Appendix A To Part 136 Methods For Organic Chemical Analysis of Municipal and Industrial Wastewater, Method 603—Acrolein And Acrylonitrile>