Propfan

From Wikipedia, the free encyclopedia
Jump to: navigation, search
NASA / GE Unducted Fan
Part of a series on
Aircraft propulsion
Shaft engines :
driving propellers, rotors, ducted fans, or propfans
Reaction engines
Others

A propfan is a type of aircraft engine related in concept to both the turboprop and turbofan, but distinct from both. The engine uses a gas turbine to drive an unshielded propeller like a turboprop, but the propeller itself is designed with a large number of short, highly twisted blades, similar to a turbofan's bypass compressor (the "fan" itself). For this reason, the propfan has been variously described as an "unducted fan" or an "ultra-high-bypass (UHB) turbofan". In technical papers it is described as "a small diameter, highly loaded multiple bladed variable pitch propulsor having swept blades with thin advanced airfoil sections, integrated with a nacelle contoured to retard the airflow through the blades thereby reducing compressibility losses and designed to operate with a turbine engine and using a single stage reduction gear resulting in high performance." The design is intended to offer the speed and performance of a turbofan, with the fuel economy of a turboprop. The propfan concept was first revealed by Carl Rohrbach and Bruce Metzger of the Hamilton Standard Division of United Technologies in 1975[1] and was patented by Robert Cornell and Carl Rohrbach of Hamilton Standard in 1979.[2] Later work by General Electric on similar propulsors was done under the name unducted fan, which was a modified turbofan engine, with the fan placed outside the engine nacelle on the same axis as the compressor blades.

Limitations and solutions[edit]

Propeller blade tip speed limit[edit]

Turboprops have an optimum speed below about 450 mph (700 km/h).[3] The reason is that all propellers lose efficiency at high speed, due to an effect known as wave drag that occurs just below supersonic speeds. This powerful form of drag has a sudden onset, and led to the concept of a sound barrier when it was first encountered in the 1940s. In the case of a propeller, this effect can happen any time the propeller is spun fast enough that the blade tips near the speed of sound, even if the aircraft is motionless on the ground.

The most effective way to counteract this problem (to some degree) is by adding more blades to the propeller, allowing it to deliver more power at a lower rotational speed. This is why many World War II fighter designs started with two or three-blade propellers and by the end of the war were using up to five blades in some cases as the engines were upgraded and new propellers were needed to more effectively absorb that power. The major downside to this approach is that adding blades makes the propeller harder to balance and maintain and the additional blades cause minor performance penalties (due to drag and efficiency issues). But even with these sorts of measures at some point the forward speed of the plane combined with the rotational speed of the propeller will once again result in wave drag problems. For most aircraft this will occur at speeds over about 450 mph (700 km/h).

Swept propeller

A method of decreasing wave drag was discovered by German researchers in 1935—sweeping the wing backwards. Today, almost all aircraft designed to fly much above 450 mph (700 km/h) use a swept wing. In the 1970s, Hamilton Standard started researching propellers with similar sweep. Since the inside of the propeller is moving slower than the outside, the blade is progressively more swept toward the outside, leading to a curved shape similar to a scimitar - a practice that was first used as far back as 1909, in the Chauvière make of two-bladed wood propeller used on the Blériot XI.

Jet aircraft fuel economy[edit]

Jet aircraft are well known for permitting greater thrusts and higher speeds than could be achieved by conventional propeller-driven aircraft operating within the same aerodynamic envelope. However, jet aircraft are limited in fuel economy. In fact, for the same fuel consumption, a propeller-driven aircraft can produce greater thrust. As fuel costs become an increasingly important aspect of commercial aviation, aircraft engine designers continue to seek an optimal combination of jet engine thrust ratios and propeller fuel efficiency.

The propfan concept was developed to deliver 35% better fuel efficiency than contemporary turbofans. In static and air tests on a modified Douglas DC-9, propfans reached a 30% improvement over the OEM turbofans. This efficiency came at a price, as one of the major problems with the propfan is noise, particularly in an era where aircraft are required to comply with increasingly strict Stage III and Stage IV noise requirements. However, in 2012 GE expects that openrotors can meet these noise levels by 2030 when new narrowbody generations from Boeing and Airbus become available. Airlines consistently ask for low noise, and then maximum fuel efficiency.[4]

The Hamilton Standard Division of United Technologies developed the propfan concept in the early 1970s. Numerous design variations of the propfan were tested by Hamilton Standard, in conjunction with NASA in this decade.[5][6] This testing led to the Propfan Test Assessment (PTA) program, where Lockheed-Georgia proposed modifying a Gulfstream II to act as in-flight testbed for the propfan concept and McDonnell Douglas proposed modifying a DC-9 for the same purpose.[7] NASA choose the Lockheed proposal, where the aircraft had a nacelle added to the left wing, containing a 6000 hp Allison 570 turboprop engine (derived from the XT701 turboshaft developed for the Boeing Vertol XCH-62 program), powering a 9-foot diameter Hamilton Standard SR-7 propfan. The aircraft, so configured, first flew in March 1987. After an extensive test program, the modifications were removed from the aircraft.[8][9]

General Electric's GE36 Unducted Fan was a variation on the original propfan concept, and appears similar to a pusher configuration piston engine. GE's UDF has a novel direct drive arrangement, where the reduction gearbox is replaced by a low-speed seven-stage free turbine. The turbine rotors drive the forward set of propellers, while the rear set is connected to the free turbine stators and rotates in the opposite direction. So, in effect, the power turbine has 14 stages. Boeing intended to offer GE's pusher UDF engine on the 7J7 platform, and McDonnell Douglas was going to do likewise on their MD-94X airliner. The GE36 was first flight tested mounted on the #3 engine station of a Boeing 727-100 in 1986.[10]

McDonnell Douglas developed a proof-of-concept aircraft by modifying its company-owned MD-80. They removed the JT8D turbofan engine from the left side of the fuselage and replaced it with the GE36. A number of test flights were conducted, initially out of Mojave, California, which proved the airworthiness, aerodynamic characteristics, and noise signature of the design. Following the initial tests, a first-class cabin was installed inside the aft fuselage and airline executives were offered the opportunity to experience the UDF-powered aircraft first-hand. The test and marketing flights of the GE-outfitted demonstrator aircraft concluded in 1988, exhibiting a 30% reduction in fuel consumption over turbo-fan powered MD-80, full Stage III noise compliance, and low levels of interior noise/vibration. Due to jet fuel price drops and shifting marketing priorities, Douglas shelved the program the following year.

In the 1980s, Allison collaborated with Pratt & Whitney on demonstrating the 578-DX propfan. Unlike the competing GE36 UDF, the 578-DX was fairly conventional, having a reduction gearbox between the LP turbine and the propfan blades. The 578-DX was successfully flight tested on a McDonnell Douglas MD-80. However, none of the above projects came to fruition, mainly because of excessive cabin noise (compared to turbofans) and low fuel prices.[11]

Progress D27 Propfans fitted to an Antonov An-70

The Progress D-27 propfan, developed in the U.S.S.R., is even more unconventional in layout, with the propfan blades at the front of the engine in a tractor configuration. Two rear-mounted D-27 propfans propelled the Antonov An-180, which was scheduled for a 1995 entry into service. Another Russian propfan application was the Yakovlev Yak-46. During the 1990s, Antonov also developed the An-70, powered by four Progress D-27s in a tractor configuration; the Russian Air Force placed an order for 164 aircraft in 2003, which was subsequently canceled. However, the An-70 remains available for further investment and production.

With the current high price for jet fuel and the emphasis on engine/airframe efficiency to reduce emissions, there is renewed interest in the propfan concept for jetliners that might come into service beyond the Boeing 787 and Airbus A350XWB. For instance, Airbus has patented aircraft designs with twin rear-mounted counter-rotating propfans.[12]

Aircraft with propfans[edit]

See also[edit]

Comparable engines
Related lists

References[edit]

  1. ^ Rohrback, C. and Metzger, F.B., 'The Prop-Fan, a New Look at Propulsors', AIAA paper 75-1208, presented at the AIAA/SAE 11th Propulsion Conference, Anaheim California, September 1975.
  2. ^ US Patent 4171183 Retrieved 28 June 2011.
  3. ^ Spakovszky, Zoltan (2009). "Unified Propulsion Lecture 1". Unified Engineering Lecture Notes. MIT. Retrieved 2009-04-03. 
  4. ^ Croft, John. "Open rotor noise not a barrier to entry: GE" Flight International, 5 July 2012. Retrieved: 21 July 2012.
  5. ^ Rohrbach, Carl, 'A Report on the Aerodynamic Design and Wind Tunnel Test of a Prop-fan Model', AIAA paper 76-667, presented at the AIAA/SAE 12th Propulsion Conference, Palo Alto California, July 1976.
  6. ^ Jeracki, Robert J., Mikkelson, Daniel C. and Blaha, Bernard J., 'Wind Tunnel Performance of Four Energy Efficient Propellers Designed for Mach 0.8 Cruise', SAE Paper 790573, presented at the SAE Business Aircraft Meeting and Exposition, Wichita Kansas, April 1979.
  7. ^ [1] NASA-CR-166138. Retrieved 28 June 2011
  8. ^ 'Propfan Test Assessment (PTA)' NASA-CR-185138. Retrieved 28 June 2011
  9. ^ 'Propfan Test Assessment (PTA): Flight Test Report' NASA-CR-182278. Retrieved 28 June 2011
  10. ^ 'The Power of Persuasion' Flight International. May 23, 1987. Retrieved 28 June 2011.
  11. ^ Flight International (2007-07-12). "Whatever happened to propfans?". Retrieved 2007-07-14. 
  12. ^ US application 2009020643, Airbus & Christophe Cros, "Aircraft having reduced environmental impact", published 2009-01-22 

General ressources

  • Prop fan propulsion concepts: Technology Review, Design Methodology, State-of-the-art designs and future outlook. Raymond Scott Ciszek. University of Virginia Department of Mechanical and Aerospace Engineering. Senior Thesis Project. March 25, 2002

External links[edit]