Proton conductor

From Wikipedia, the free encyclopedia
Jump to: navigation, search

A proton conductor is an electrolyte, typically a solid electrolyte, in which H+[1] are the primary charge carriers.


For practical applications, proton conductors are usually solid materials. Typical materials are polymers or ceramic. Typically, the pores in practical materials are small such that protons dominate direct current and transport of bulk solvent is prevented. Ice is a proton conductor, albeit a relatively poor one.[2]

Proton conduction was first suggested by Alfred Rene Jean Paul Ubbelohde (14 December 1907 - 7 January 1988) and S. E. Rogers.[3]

When in the form of thin membranes, proton conductors are an essential part of small, inexpensive fuel cells. The polymer nafion is a typical proton conductor in fuel cells.

High proton conductivity has been reported among alkaline-earth cerates and zirconate based perovskite materials such as acceptor doped SrCeO3, BaCeO3 and BaZrO3.[4] Relatively high proton conductivity has also been found in rare-earth ortho-niobates and ortho-tantalates as well as rare-earth tungstates.[citation needed]


  1. ^ Traditionally, but not precisely, H+ ions are referred as "protons".
  2. ^ A. Crofts (1996). "Lecture 12: Proton Conduction, Stoichiometry". University of Illinois at Urbana-Champaign. Retrieved 2009-12-06. 
  3. ^ S. E. Rogers and A. R. Ubbelohde (1950). "Melting and Crystal Structure III: Low-melting Acid Sulphates". Transactions of the Faraday Society 46: 1051. doi:10.1039/tf9504601051. 
  4. ^ K. D. Kreuer (2003). "Proton-conducting oxides". Annu. Rev. Mater. Res. 33: 333. doi:10.1146/annurev.matsci.33.022802.091825.