Pseudomonas putida

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Pseudomonas putida
Scientific classification
Kingdom: Bacteria
Phylum: Proteobacteria
Class: Gamma Proteobacteria
Order: Pseudomonadales
Family: Pseudomonadaceae
Genus: Pseudomonas
Species: P. putida
Binomial name
Pseudomonas putida
Trevisan, 1889
Type strain
ATCC 12633

CCUG 12690
CFBP 2066
DSM 291
HAMBI 7
JCM 13063 and 20120
LMG 2257
NBRC 14164
NCAIM B.01634
NCCB 72006 and 68020
NCTC 10936

Synonyms

Bacillus fluorescens putidus" Flügge 1886
Bacillus putidus Trevisan 1889
Pseudomonas eisenbergii Migula 1900
Pseudomonas convexa Chester 1901
Pseudomonas incognita Chester 1901
Pseudomonas ovalis Chester 1901
Pseudomonas rugosa (Wright 1895) Chester 1901
Pseudomonas striata Chester 1901
Pseudomonas mildenbergii Bergey, et al.
Arthrobacter siderocapsulatus Dubinina and Zhdanov 1975
Pseudomonas arvilla O. Hayaishi
Pseudomonas barkeri Rhodes
Pseudomonas cyanogena Hammer

Pseudomonas putida is a gram-negative rod-shaped saprotrophic soil bacterium. Based on 16S rRNA analysis, P. putida has been placed in the P. putida group, to which it lends its name.[1]

It is the first patented organism in the world. Because it is a living organism the patent was disputed and brought before the United States Supreme Court in the historic court case Diamond v. Chakrabarty which the inventor, Ananda Mohan Chakrabarty, won. It demonstrates a very diverse metabolism, including the ability to degrade organic solvents such as toluene.[2] This ability has been put to use in bioremediation, or the use of microorganisms to biodegrade oil. Use of P. putida is preferable to some other Pseudomonas species capable of such degradation as it is a safe species of bacteria, unlike P. aeruginosa for example, which is an opportunistic human pathogen.

Uses[edit]

Bioremediation[edit]

The diverse metabolism of P. putida may be exploited for bioremediation; for example, it is used as a soil inoculant to remedy naphthalene contaminated soils.[3]

P. putida is capable of converting styrene oil into the biodegradable plastic PHA.[4][5] This may be of use in the effective recycling of Polystyrene foam, otherwise thought to be non-biodegradable.

Biocontrol[edit]

P. putida has demonstrated potential biocontrol properties, as an effective antagonist of damping off diseases such as Pythium[6] and Fusarium.[7]

Oligonucleotide Usage Signatures of the Pseudomonas putida KT2440 Genome[edit]

Di- to pentanucleotide usage and the list of the most abundant octa- to tetradecanucleotides are useful measures of the bacterial genomic signature. The Pseudomonas putida KT2440 chromosome is characterized by strand symmetry and intra-strand parity of complementary oligonucleotides. Each tetranucleotide occurs with similar frequency on the two strands. Tetranucleotide usage is biased by G+C content and physicochemical constraints such as base stacking energy, dinucleotide propeller twist angle or trinucleotide bendability. The 105 regions with atypical oligonucleotide composition can be differentiated by their patterns of oligonucleotide usage into categories of horizontally acquired gene islands, multidomain genes or ancient regions such as genes for ribosomal proteins and RNAs. A species-specific extragenic palindromic sequence is the most common repeat in the genome that can be exploited for the typing of P. putida strains. In the coding sequence of P. putida LLL is the most abundant tripeptide.[8]

Organic Synthesis[edit]

CBB5 and caffeine consumption[edit]

Pseudomonas putida CBB5 can live on pure caffeine and has been observed to break caffeine down into carbon dioxide and ammonia.[9][10]

References[edit]

  1. ^ Anzai, et al.; Kim, H; Park, JY; Wakabayashi, H; Oyaizu, H (Jul 2000). "Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence". Int J Syst Evol Microbiol 50 (4): 1563–89. doi:10.1099/00207713-50-4-1563. PMID 10939664. 
  2. ^ Marqués, Silvia; Ramos, Juan L. (1993). "Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways". Molecular Microbiology 9 (5): 923–9. doi:10.1111/j.1365-2958.1993.tb01222.x. PMID 7934920. 
  3. ^ Gomes, NC; Kosheleva, IA; Abraham, WR; Smalla, K (2005). "Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community". FEMS microbiology ecology 54 (1): 21–33. doi:10.1016/j.femsec.2005.02.005. PMID 16329969. 
  4. ^ Immortal Polystyrene Foam Meets its Enemy | LiveScience
  5. ^ Ward, PG; Goff, M; Donner, M; Kaminsky, W; O'Connor, KE (2006). "A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic". Environmental science & technology 40 (7): 2433–7. doi:10.1021/es0517668. PMID 16649270. 
  6. ^ Amer, GA; Utkhede, RS (2000). "Development of formulations of biological agents for management of root rot of lettuce and cucumber". Canadian journal of microbiology 46 (9): 809–16. doi:10.1139/w00-063. PMID 11006841. 
  7. ^ Validov, S; Kamilova, F; Qi, S; Stephan, D; Wang, JJ; Makarova, N; Lugtenberg, B (2007). "Selection of bacteria able to control Fusarium oxysporum f. Sp. Radicis-lycopersici in stonewool substrate". Journal of applied microbiology 102 (2): 461–71. doi:10.1111/j.1365-2672.2006.03083.x. PMID 17241352. 
  8. ^ Cornelis P (editor). (2008). Pseudomonas: Genomics and Molecular Biology (1st ed.). Caister Academic Press. ISBN 1-904455-19-0. 
  9. ^ http://blogs.scientificamerican.com/observations/2011/05/24/newly-discovered-bacteria-lives-on-caffeine
  10. ^ Summers, RM; Louie, TM; Yu, CL; Subramanian, M (2011). "Characterization of a broad-specificity non-haem iron N-demethylase from Pseudomonas putida CBB5 capable of utilizing several purine alkaloids as sole carbon and nitrogen source". Microbiology (Reading, England) 157 (Pt 2): 583–92. doi:10.1099/mic.0.043612-0. PMID 20966097. 

External links[edit]

  • Pseudomonas putida is an example for plant growth promoting Rhizobacterium,which produces iron chelating substances.