Fire engine

From Wikipedia, the free encyclopedia
  (Redirected from Pumper)
Jump to: navigation, search
"Fire truck" redirects here. For the 1978 arcade game, see Fire Truck (video game).
"Fire engines" redirects here. For the Scottish post-punk band, see The Fire Engines.
Fire engine operated by the London Fire Brigade in the United Kingdom

A fire engine (also known in some territories as a fire apparatus, fire truck, or fire appliance) is a vehicle designed primarily for firefighting operations. In addition, many fire departments often employ their vehicles for various other uses including emergency medical services and rescue purposes. The terms "fire engine" and "fire truck" are often used interchangeably but in North America represent different types of vehicles.

The primary purpose of a fire engine include transporting firefighters to an incident scene, providing water with which to fight a fire, and carrying other equipment needed by the firefighters. A typical modern vehicle will carry tools for a wide range of firefighting and rescue tasks, with common equipment including ladders, self-contained breathing apparatus, ventilating equipment, first aid kits, and hydraulic rescue tools.

Many fire vehicles are based on standard vehicle models (although some parts may be upgraded to cope with the demands of the vehicle's usage). They are normally fitted with audible and visual warnings, as well as communication equipment such as a two-way radios and mobile computer technology.

Fire vehicles are often adapted to their areas of operation, with fire departments covering metropolitan areas more likely to require specialisms such as hazardous material incidents, multiple hose laying, and technical rescues of people from traffic collisions or structural collapses, whereas rural departments may have more requirement for wildland firefighting, or access to remote areas.

Types[edit]

Conventional fire apparatus[edit]

Conventional pumper of Fire and Rescue NSW in Wagga Wagga, Australia

The standard fire engine is an apparatus designed primarily for firefighting operations. The primary purpose of the engine is transporting firefighters to the scene, providing a limited supply of water with which to fight the fire, and carrying all the other tools, equipment, and hoses needed by the firefighters. The tools carried on the fire engine will vary grately based on many factors including the size of the department, and what sort of terrain the department must handle. For example, departments located near large bodies of water or rivers are likely to have some sort of water rescue equipment. Standard tools found on nearly all fire engines include ladders, pike poles, axes, hydraulic rescue tools (often referred to as the jaws of life), halligan bars, floodlights, fire hose, fire extinguishers, self-contained breathing apparatus, thermal imaging cameras, automated external defibrillators and other general first aid equipment.[1] The exact layout of what is carried on an engine is decided by the needs of the department.

Fire engines typically have a fixed deluge gun, also known as a master stream, which can direct the water as pointed by the operator. An additional feature of engines are their preconnected hose lines, commonly referred to as preconnects.[2] The preconnects are attached to the engines onboard water supply and allow firefighters to quickly mount an aggressive attack on the fire as soon as they arrive on scene.[2] When the onboard water supply runs out, the engine is connected to more permanent sources such as fire hydrants or water tenders and can also use natural sources such as rivers or reservoirs by drafting water.

Wildland-urban interface engine[edit]

A Type 1 fire engine belonging to the SBCFD.

Fire departments that serve areas along the wildland–urban interface are faced with unique challenges that departments based in larger cities or strictly rural areas do not need to worry about.[3] Departments in these areas often elect to use a type of fire engine commonly referred to as a wildland-urban interface engine or simply interface engines.[4] While technically considered a wildland fire engine by many, these apparatus maintain the traditional look and feel of a standard engine.[5]

In the United States, fire engines in use in wildland–urban interface communities, fall under NFPA regulation 1906, which sets the standard for all wildland fire engines.[6] Some of the features that separate Type 1 and Type 2 engines from types 3-7, include their supply of 2.5-inch (6.4 cm) hose, their increased flow rate, and their deck gun (also known as a master stream).[7] Additionally, Type 1 and Type 2 engines are required to carry basic ground ladders in accordance with NFPA 1901 while types 3-7 do not carry ladders at all.[7]

Minimum Standards by Type [8]
(for full table, see wildland fire engines)
Type Minimum Tank
Capacity
Minimum flow rate Minimum Pressure Hose Types Pump and Roll Master stream
2-12" 1-12"
1 300 US gal (1,100 L) 1,000 US gal/min (3,800 L/min) 150 psi (1,000 kPa) 1,200 ft (370 m) 500 ft (150 m) Rarely
(not required)
Required
2 300 US gal (1,100 L) 500 US gal/min (1,900 L/min) 150 psi (1,000 kPa) 1,000 ft (300 m) 500 ft (150 m) Rarely
(not required)
Sometimes
(not required)

Aerial apparatus[edit]

Turntable ladder[edit]

Several aerial apparatus in use at a fire in Los Angeles

A turntable ladder (TL) is perhaps the best-known form of special purpose aerial apparatus, and is used to gain access to fires occurring at height using a large telescopic ladder, where conventional ladders carried on conventional appliances might not reach.

The name is derived from the fact that the large ladder is mounted on a turntable on the back of a truck chassis, allowing it to pivot around a stable base. This allows a much greater ladder length to be achieved. To increase its length, the ladder is telescopic. Modern telescopic ladders are either hydraulic or pneumatic in operation.

A ladder can also be mounted behind the cab. This is sometimes called "mid-ship" and the arrangement allows a shorter wheelbase for the truck, and also can be more stable in some conditions.

The key functions of a turntable ladder are:

  • Allowing access or egress of firefighters and casualties at height;
  • Providing a high-level water point for firefighting (elevated master stream);
  • Providing a platform from which tasks such as ventilation or overhaul can be executed.

While the traditional characteristic of a fire appliance was a lack of water pumping or storage, many modern TLs have a water pumping function built in (and some have their own on-board supply reservoir), and may have a pre-piped waterway running the length of the ladder which directs a stream of water to the firefighters at the top. In some cases, there may also be a monitor at the top of the ladder for ease of use. Other appliances may simply have a track-way which will hold a manually-run hose reel securely, and prevent it from falling to the ground.

Tiller Truck[edit]

Tiller-quint of the Los Angeles Fire Department manufactured by American LaFrance

A tiller truck, also known as a tractor-drawn aerial, tiller ladder, or hook-and-ladder truck, is a specialized turntable ladder mounted on a semi-trailer truck. Unlike a commercial semi, the trailer and tractor are permanently affixed and cannot be separated without special tools. It has two drivers, with separate steering wheels for front and rear wheels.[9]

One of the main features of the tiller-truck is its enhanced maneuverability.[10] The independent steering of the front and back wheels allow the tiller to make much sharper turns which is particularly helpful on narrow streets and apartment complexes with mazelike roads.[9] An additional feature of the tiller-truck is that its overhaul length, over 50 feet (15 m) for most models, allows for additional storage of tools and equipment.[10] The extreme length gives compartment capacities that range between 500 and 650 cubic feet (14 and 18 m3) on the trailer with an additional 40 and 60 cubic feet (1.1 and 1.7 m3) on the cab.[10]

Some departments, elect to use tiller-quints (see quint below) which are tiller trucks that have the added feature of being fitted with an on-board water tank.[10] These are particularly useful for smaller departments that do not have enough personnel to staff both an engine company and a truck company.[10]

Aerial Platform[edit]

Telescopic hydraulic platform in Roskilde, Denmark

Some aerials have a platform, also known as a basket or bucket, mounted at the top of the ladder, these are commonly known as platform trucks. These platforms can provide a secure place from which a firefighter can operate. Many platforms also allow for rescues to be performed and are outfitted with tie down clips and rappelling arms.[11] One of the features that give platforms an edge of traditional aerials is their ability to fitted with multiple master streams, while a standard aerial ladder can only support a single fire monitor.[12]

There are also platform trucks that do not have a ladder attached to the platform. These specialized elevated work platforms are capable of articulating which allows the arm to bend in one or more places. This is an advantage over the traditional platform ladder which can only extend in a straight line and gives the articulating platform the ability to go "up and over" an obstacle.[citation needed]

Quint[edit]

A quint, is essentially a hybrid of a fire engine and a fire truck. The name is derived from the Latin prefix quinque-, meaning five, and refers to the five functions that a quint provides: an onboard pump, a water tank, fire hose, aerial ladder and multiple ground ladders (more than just the standard ladders caried on a traditional engine).[13] In the United States, National Fire Protection Association regulation 1901 outlines the specifications for a quint which include an aerial ladder or elevating platform with a permanently installed waterway and an onboard water tank with a minimum capacity of 300 US gallons (1,100 l).[14]

Rescue apparatus[edit]

Heavy rescue vehicle[edit]

Main article: Heavy rescue vehicle
Heavy rescue vehicle with the Fire Bureau in Sapporo, Japan

A heavy rescue vehicle, sometimes referred to as a Rescue Company, Rescue Squad or Technical Rescue, is a type of specialty firefighting or EMS apparatus. Essentially giant toolboxes on wheels, they are primarily designed for technical rescue situations such as vehicle extrications following traffic collisions, confined space rescues, rope rescues, swiftwater rescues, or building collapses.

In the U.S., NFPA regulations 1006 and 1670 provide guidelines and regulations for the operation of heavy rescue vehicles and also state that all "rescuers" must have medical training to perform any technical rescue operation, including cutting the vehicle itself.[15][16] In most rescue environments, fire department personnel conduct rescue operations working hand-in-hand with medical personnel, such as EMTs or paramedics.

In addition to fire and rescue departments, tram or railway companies may have their own dedicated heavy rescue squads.[17][18] For example, railway rescue squads may carry very specialized equipment for railway accidents like hydraulic jacks with capacity for lifting locomotives or even moving them horizontally, and equipment for tank car accidents.[19]

Wildland fire apparatus[edit]

Main article: Wildland fire engine

Wildland firefighting requires vehicles that can easily negotiate difficult terrain and high-gradient roads, be self-reliant, and have high clearances for wheels and suspension. These wildland fire engines are traditionally smaller than standard fire apparatus and are primarily used for vegetation fires or wildland fires. They may also respond to emergencies in rough terrain where other vehicles cannot respond. Most wildland engines feature four-wheel drive capability to improve hill climbing and rough terrain capability.[20] Some wildland apparatus can pump water while driving (where some traditional engines must be stationary to pump water), allowing "running attacks" on vegetation fires to minimize the rate of spread.[21]

Hazardous materials apparatus[edit]

HAZMAT Response unit with the ACT Fire & Rescue Service in Canberra

Many fire departments covering large metropolitan areas or those containing many high-risk hazards keep specialist appliances for dealing with hazardous materials (HAZMAT). These are of several types, from those used to clean spilled oil on streets and highways, to full decontamination units, designed to clean victims and rescuers of contaminants after an incident.

Some fire departments may deploy a scientific support vehicle where required. Essentially a mobile laboratory, these units can attend a wide range of incidents, including chemical spills and fires, where early on-site scientific analysis and monitoring will speed up the detection process and allow firefighters and other emergency services to provide the correct response for the particular incident.

Logistical support apparatus[edit]

Many fire departments operate a number of vehicles in specialized logistical functions. These can be stand-alone vehicles, or may be modular, such as with the use of a hook-lift system. Hooklifts are sometimes only employed for seldom-used equipment; they can load a variety of different equipment containers very rapidly and act as a special unit with lower investment costs. For example, the Helsinki Rescue Department has several hooklift trucks and more than 40 containers, including a water container, a hose container, and an oil destruction container.[22] Containers may also carry a command post, salvage tools, foam barrels, hoses and pumps for wildfires, or even field hospitals.

Command support unit[edit]

London Fire Brigade Command Unit

The advancement of technology and potential for very large-scale incidents has led to many fire departments utilizing or increasing their use of mobile command support units.

A fundamental advantage of such an appliance is to accommodate the many different types of communication equipment needed at major incidents. In addition to the wide range of radio frequencies used, fire chiefs often need to communicate via landlines and send and receive information via satellite links and CCTV of the ongoing situation. The command unit can essentially be used as an on-site conference centre for command personnel, mapping and planning firefighting operations and booking in and directing crews as they arrive.

Water and foam-carrying apparatus[edit]

Tanker truck[edit]

A tanker truck, which can also be known as a water tender or water bowser, is a specialist fire appliance with the primary purpose of transporting large amounts of water to the fireground to make it available for extinguishing operations. These are especially useful in rural areas where fire hydrants are not readily available and natural water resources are insufficient or difficult to exploit.

Most tankers have an on-board pumping system. This pump is often not of sufficient power to fight fires (as it is designed to be attached to a fire engine), but is more often used to draw water into the tender from hydrants or other water sources. In some areas, the tenders are used to pump water during floods, and may be fitted with a heavier duty pump for this purpose. Many tankers are equipped with fast-drain valves on the sides and back of the truck. This allows firefighters to empty thousands of gallons or several cubic meters of water into a portable water tank in just a few seconds.

Most water tenders are designed to carry loads of 1,000 US gallons (3,800 L; 830 imp gal) or more. In the U.S., 1,000 U.S. gallons is the requirement in the NFPA standards.[23] Some may carry up to or even upwards of 5,000 US gallons (4,200 imp gal; 19,000 L) of water.[24][25][26]

Hose layer[edit]

In some fire departments, a similar function may be performed by a hose layer, hose tender or hydrant tender which carries large-capacity high-pressure hose wagons to incidents where hydrants or other water sources are not close enough to the fireground. It will lay out its hose at the nearest hydrant or water source then drive to the fireground with the hose laying off the back; upon arrival it will connect to a fire appliance to supply it with the water needed for the firefighting operations.

Foam tender[edit]

Foam tenders carry large amounts of foam to be used at incidents where water is ineffective or cannot be used to tackle a blaze. They may take the form of a tanker, or a truck carrying foam packets or barrels.

Airport crash tender[edit]

LBFD Crash 3 responding to a call at Long Beach Airport.
Main article: Airport crash tender

An airport crash tender, or "crash ring", is a specialized fire engine designed for use at aerodromes in aircraft accidents.[27] Some of the features that make the crash rigs unique are their ability to move on rough terrain outside the runway and airport area, large water capacity as well as a foam tank, a high-capacity pump, and water/foam monitors. Newer ARFF vehicles also incorporate twin agent nozzles/injection systems to inject a stream of Purple-K dry chemical into the AFFF Aqueous Film Forming Fluroprotein foam stream "knocking down" the fire faster.[28] Some also have Halotron tanks with handlines for situations that require a clean agent to be utilized. These features give the airport crash tenders a capability to reach an airplane rapidly, and rapidly extinguish large fires with jet fuel involved.

ARFF tenders come in 4x4, 6x6 and 8x8 configurations and are capable of carrying upwards of 4,500 US gallons (17,000 l) of water and 600 US gallons (2,300 l) of firefighting foam[29]

Other apparatus[edit]

Kei car fire truck in Japan

Other fire apparatus include:

Other functions[edit]

In some communities a fire apparatus, often a paramedic engine, will be used to carry first responder firefighters, paramedics or EMTs to medical emergencies because of their faster response times due to forward staging in the city compared to ambulances coming from hospitals [30][31] Fire departments may also have lifeguards in places such as Los Angeles County, California.

Design and construction[edit]

The discharge and intake valves on the side of a North American-type fire engine. In the UK, Ireland and Europe, these valves are generally at the rear of the vehicle and are known as deliveries and collectors respectively.

Many fire appliances around the world are based on standard truck or lorry models, which are upgraded to the specifications required by the purchasing department. In the United States, a majority of fire trucks are specially designed from the chassis to the cab and body. This has led to the use of the term custom fire truck, as opposed to a commercial chassis and cab.

A fire appliance may undergo modifications such as adjustments for higher durability, removal of any speed limiter, and adjustments for long periods of idling at a higher temperature. This may be accomplished by heavy duty suspensions, brakes, tires, alternator, transmission and cooling systems. It is also usual to upgrade the capacity of the electrical system to accommodate additional electrical and electronic equipment.

Fire appliances have audible and visual warnings, to protect themselves from traffic, and make themselves visible to other units at an incident.

In many countries, use of the audible and visual warnings affords the driver a degree of exemption from road traffic laws (such as the right to exceed speed limits, treat red stop lights as give way etc.) and may also infer a duty on other motorists to move out of the direction of passage of the fire vehicle (or face possible prosecution).

Visual warnings[edit]

Visual warnings on a fire appliance can be of two types: either passive or active.

Passive visual warnings[edit]

The passive visual warnings involve the use of high contrast patterns. Older vehicles (and those in developing countries) are more likely to have their patterns painted on, whereas modern appliances often carry retro-reflective designs which reflect light from headlights or torches. Patterns include "checker board" (alternate colored squares, sometimes called "battenburg markings", named after a type of cake), chevrons (arrowheads, often pointed towards the front of the vehicle if on the side, or pointing vertically upwards if on the rear) or stripes (along the side; these were the first type of retro-reflective devices introduced, as the original retro-reflective material came only in tape form). In some countries, in addition to retro-reflective markings, vehicles may be painted a bright yellow or orange, although in many countries, bright red remains the color for fire engines. In Australia a number of rural fire units are painted white, such as those used by the Country Fire Service in South Australia, making them more visible in bushfire conditions. In North America, Red is often combined with another color, often White or Black.

Another passive marking is the word FIRE, RESCUE or local language variant spelled out in reverse on the front of the vehicle. This enables drivers of other vehicles to more easily identify a fire service vehicle in their rear view mirrors. The appliance may also display a telephone number which may be used to summon assistance, along with the name of the operating department or station identifier.

NFPA 1901 Standards for Automotive Fire Apparatus: 20.4 Aerial Ladder Operating Position 20.4.2 A system that is lighted and marked with labels shall be visible from the operator's position to indicate the elevation, extension, and rated capacities (see sample of boom angle indicator[32]).

Active visual warnings[edit]

Active visual warnings of a North American-type fire appliance

The active visual warnings are usually in the form of flashing coloured lights (also known as "beacons" or "lightbars"). These flash to attract the attention of other road users as the fire appliance approaches, or to provide warning to motorists approaching a stopped appliance in a dangerous position on the road. Common colours for fire warning beacons are blue and red. The beacons can be made to flash. The original method was to place a spinning mirror which moves around a light bulb, called a "rotating beacon". More modern methods include the use of strobe lights, which are usually brighter, and can be programmed to produce specific patterns (such as a left -> right pattern when parked on the left hand side of the road, indicating to other road users that they should move out away from the vehicle). LED flashing lights are becoming more widespread, as they are low profile and consume less energy. See also Emergency vehicle equipment.

Audible warnings[edit]

Wail, Yelp and Phaser electronic tones from a Whelen(R) siren unit

In addition to visual warnings, most appliances are also fitted with audible warnings, sometimes known as sirens, which can alert people to the presence of an emergency vehicle before they can be seen. The first audible warnings were mechanical bells, mounted on the front or roof of the truck. Most vehicles are now fitted with electronic sirens, which can produce a range of different sounds. Fire service driving training often includes the use of different sounds depending on traffic conditions and maneuver being performed. For instance, on a clear road, approaching a junction, the "wail" setting may be used, which gives a long up and down variation, with an unbroken tone, whereas, in heavy slow traffic, a "yelp" setting may be preferred, which is like a wail, but faster.

The speakers for modern sirens can be located in several places on the vehicle, including being integral to the lightbar, or hidden in the grille. Some vehicles may also be fitted with airhorn audible warnings. The "acoustic" or "air" traditional sirens are still in wide use, most consistently on North American-type fire apparatus but other countries such as Japan have fitted their apparatus with these types of warning systems as well, as its overtones help the public "locate" and avoid the fire truck—the newer electronic signals disperse almost pure electronic sine wave tones, which are hard to locate, especially in city "canyons" of buildings. Furthermore, "air" sirens are generally much, much louder. In Chile, many vehicles are fitted with three types of audible warnings, which are sounded all at once: the classic "air" siren, the electronic "yelp", and the European two-tone air horns (sometimes newer vehicles are fitted with the electronic version of the latter, commonly called "Hi-Lo").

A development is the use of the RDS system of car radios, whereby the vehicle can be fitted with a short range FM transmitter, set to RDS code 31, which interrupts the radio of all cars within range, in the manner of a traffic broadcast, but in such a way that the user of the receiving radio is unable to opt out of the message (as with traffic broadcasts). This feature is built into all RDS radios for use in national emergency broadcast systems, but short range units on emergency vehicles can prove an effective means of alerting traffic to their presence, although is not able to alert pedestrians and non-RDS radio users.

Additional equipment[edit]

Firefighters may also have a range of additional equipment available to them, which may include:

  • Two-way radio—This is one of the most important pieces of equipment. Many services have moved from traditional UHF/VHF sets, which can be monitored externally, to more secure systems, such as those working on a GSM system, such as TETRA.
  • Mobile data terminal—Many appliances are fitted with Mobile Data Terminals (or MDTs), which are connected wirelessly to a central computer, and enable firefighters to call up details such as incident logs, maps of locations, or exclusion zones.
  • Evidence-gathering CCTV—Some fire vehicles can be fitted with video cameras used to record activity. They may also be fitted with sound recording facilities. This is used for the protection of the crew (and evidence of any assaults or intimidation of the firefighters) or can be used as evidence relating to the incident itself, as well as simple documentation of the events.
  • Ramming pads—These rubberized pads are fitted to the chassis of the appliance, to allow the vehicle to be used as a battering ram, or to push other vehicles off the road in an emergency. One of the uses of ramming pads is to remove a parked car illegally blocking a fire hydrant that is needed by fire crews responding to an emergency.

Crew assignment[edit]

Part of a series on
wildland
firefighting
Wildfire at night, behind silhouetted forest, and reflected in a river.
Main articles

Firestorm · Peat fire · Wildfire · Wildfire suppression

Tactics & equipment

Aerial firefighting · Controlled burn · Driptorch · Fire apparatus · Firebreak · Fire fighting foam · Fire hose · Fire lookout tower · Fire retardant · Fire-retardant gel · Fire trail · Helicopter bucket · Hose pack · Pulaski · Wildland fire engine · Wildland fire tender

Personnel

Engine crew · Handcrew · Helitack · Hotshots · Lookout · Smokejumper · Rappeller

By country

Australia

Lists

List of wildfires
Glossary of wildfire terms

Engines are normally staffed with at least three people if possible: an officer, a driver (who usually operates the pump), and a firefighter. Preferably, an engine will carry a second firefighter, to increase effectiveness in safely attacking a fire. In some countries, such as Finland, an engine carries the unit leader, an engineer, and one or two pairs of firefighters.[33] Since firefighting takes places in a very hot and hostile environment with high risks, fire fighters work as pairs, and at least one more pair of firefighters is needed on scene for the safety and shifting.

In cities of the United States, firefighters are generally deployed into fire companies specializing in certain tasks. Most common are engine companies and ladder, or "truck", companies. In addition, large cities frequently staff rescue companies. By definition, each company is led by an officer (a captain or lieutenant) who commands several firefighters. Staffing of fire companies varies by jurisdiction and frequently by company type. In large cities, fire company staffing may vary from as few as three to as many as six personnel. In suburban and rural areas of the United States, the legal organization to which volunteers belong is usually called a company; one company may operate several pieces of apparatus. Duties of volunteers are often less specialized than those of city firefighters, because it is less predictable who will be available for a given emergency, so more flexibility is needed.

Other departments staff their fire engines as emergency response units. The staged layout of fire stations and apparatus around a city means that a fire engine dispatched from its station may reach a medical emergency call faster than an ambulance coming from a hospital. Therefore, firefighters are trained as EMTs and paramedics. The usual complement includes 1 fire captain and a number of additional firefighters. The number of additional firefighters depends on the severity of the incidents it will respond to, the capacity of the fire truck in question, the nature of the call for assistance and the personal preference of the fire department. For example, a pumper truck might carry 1 captain, 2 FF/Es (Engineers) and 1 FF/P (paramedic). Both the captain and the engineers are trained as Emergency Medical Technicians.

Many departments staff all of their trucks as medical response units, while some use a mixture. Common units that are medical response units include: Pumper, Rescue, Search & Rescue, and Hazardous Materials Units. The advantage of Medical Response units is well worth the training expenses. 911 medical calls that are responded to by a fire truck places less strain on ambulances and certified first responders, enabling them to focus on more critical patients. The disadvantage includes training for the firefighters as EMTs and paramedics, which happens to be very expensive. Also, medical equipment must be carried by the fire truck, reducing storage space for some firefighting equipment.

In the United Kingdom, firefighters are arranged in fire and rescue services, historically known as brigades, and usually organized at county, city, or combined level. These are divided into either commands or areas, in some cases divisions, then stations, which range in size but in almost every instance have at least one pumping appliance. In addition, general purpose engine stations may have specialist vehicles, such as turntable ladders, hydraulic platforms, foam tenders, etc. The number of personnel at a station varies depending on the number of appliances, and whether it is full-time, day manned, or retained. Generally, the crew of an average sized pump is around five, but in any case it can be no less than four and no more than six.[citation needed]

In New Zealand the standard crew consists of four: the OIC (Officer in Charge, or Officer in Command), the driver, and two others. They are numbered OIC, 1, 2, and 3, with the OIC in the front passenger's seat and number 1 directly behind them; number 3 is the driver. The crew has specific tasks in a water drill, decided by where they are sitting. At call-outs, there may be five on an appliance, but only four have allotted tasks, with the fifth person being spare.

History[edit]

Fire fighting tools in Germany. Note the picture of a hand squirt (rear wall on right side), one of the most ancient devices for applying water to a fire.
One of the simplest forms of hand tub type fire engines, engraving from the mid 17th century in Germany
Illustration of a 1670s fire engine (pumper) made in London by John Keeling of Blackfriars. Note the nozzle is mounted to the engine; later nozzles were mounted to hoses. Also, the earliest engines wheels do not turn to the side, the men moving the engine to the fire would forcibly change the direction of the engine as needed.
Manually drawn fire pump in service in Edinburgh in 1824.
1905 article in the magazine Popular Mechanics described the motorization of fire engines that was advancing rapidly in England and would soon occur elsewhere in Europe and North America.
Knox fire engine, one of the first modern fire engines, manufactured in 1905 in Springfield, Massachusetts by the Knox Automobile Company.

An early device used to squirt water onto a fire is a squirt or fire syringe. Hand squirts and hand pumps are noted before Ctesibius of Alexandria invented the first fire pump around the 2nd century B.C.,[34] and an example of a force-pump possibly used for a fire-engine is mentioned by Heron of Alexandria. The fire pump was reinvented in Europe during the 16th century, reportedly used in Augsburg in 1518 and Nuremberg in 1657. A book of 1655 inventions mentions a steam engine (called a fire engine) pump used to "raise a column of water 40 feet [12 m]", but there was no mention of whether it was portable.

Colonial laws in America required each house to have a bucket of water on the front stoop during fires at night. These buckets were intended for use by the initial bucket brigade that would supply the water at fires. Philadelphia obtained a hand-pumped fire engine in 1719, years after Boston's 1654 model appeared there, made by Joseph Jencks, but before New York's two engines arrived from London.

By 1730, Richard Newsham, in London, had made successful fire engines; the first used in New York City (in 1731) were of his make (six years before formation of the NYC volunteer fire department). The amount of manpower and skill necessary for firefighting prompted the institution of an organized fire company by Benjamin Franklin in 1737. Thomas Lote built the first fire engine made in America in 1743. These earliest engines are called hand tubs because they are manually (hand) powered and the water was supplied by bucket brigade dumped into a tub (cistern) where the pump had a permanent intake pipe. An important advancement around 1822 was the invention of an engine which could draft water from a water source doing away with the bucket brigade. Philadelphia fire engine manufacturers Sellers and Pennock model the Hydraulion is said to be the first suction engine produced in 1822.[35] Some models had the hard, suction hose fixed to the intake and curled up over the apparatus known as a squirrel tail engine.

The earliest engines were small and were carried by four men or mounted on skids and dragged to a fire. The earliest four-wheel carriage mounted engines were pulled to the fire by hand. As the engines grew larger they became horse-drawn and later self-propelled by steam engines. John Ericsson is credited with building the first American steam-powered fire engine. John Braithwaite built the first steam fire-engine in Britain.

Until the mid-19th century, most fire engines were maneuvered by men, but the introduction of horse-drawn fire engines considerably improved the response time to incidents. The first self-propelled steam-driven fire engine was built in New York in 1841. It was the target of sabotage by firefighters and its use was discontinued, and motorized fire engines did not become commonplace until the early 20th century. By 1905, the idea of combining gas engine motor trucks into fire engines was attracting great attention; according to a Popular Mechanics article in that year,[36] such trucks were rapidly gaining popularity in England. That same year, the Knox Automobile Company of Springfield, Massachusetts began selling what some[37] have described as the world's first modern fire engine. A year later, the City of Springfield had an entire modern fire department supplied with Knox fire engines.

For many years firefighters sat on the sides of the fire engines, or even stood on the rear of the vehicles, exposed to the elements. This arrangement was uncomfortable and dangerous (some firefighters were thrown to their deaths when their fire engines made sharp turns on the road), and today nearly all fire engines have fully enclosed seating areas for their crews.

Early pumpers[edit]

Early pumpers used cisterns as a source of water. Water was later put into wooden pipes under the streets and a "fire plug" was pulled out of the top of the pipe when a suction hose was to be inserted. Later systems incorporated pressurized fire hydrants, where the pressure was increased when a fire alarm was sounded. This was found to be harmful to the system and unreliable. Today's valved hydrant systems are kept under pressure at all times, although additional pressure may be added when needed. Pressurized hydrants eliminate much of the work in obtaining water for pumping through the engine and into the attack hoses. Many rural fire engines still rely upon cisterns or other sources for drafting water into the pumps.

An unidentified man poses in the driver's seat of a horse-drawn water wagon.

Early aerials[edit]

Since the late 19th century, means of reaching tall structures have been devised. At first, manually extendable ladders were used; as these grew in length (and weight), they were put onto two large wheels. When carried by fire engines these ladders had the wheels suspended behind the rear of the vehicle, making them a distinctive sight. Before long, the turntable ladder—which was even longer, mechanically extendable, and installed directly onto a fire truck—made its appearance.

The longest turntable ladders have reached a height of 150 feet (46 m), requiring the aforementioned "tiller trucks" to carry such ladders.

After the Second World War turntable ladders were supplemented by the aerial work platform (sometimes called "cherry picker"), a platform or bucket attached onto a mechanically bending arm (or "snorkel") installed onto a fire truck. While these could not reach the height of similar turntable ladders, the platforms could extend into previously unreachable "dead corners" of a burning building.

See also[edit]

References[edit]

  1. ^ "What is a Fire Engine?". WiseGeek. Retrieved 17 March 2015. 
  2. ^ a b Leihbacher, Doug (1 April 2000). "Preconnects: The Basics". Fire Engineering Magazine 153 (4). Retrieved 19 March 2015. 
  3. ^ Wright, Edward (1 August 2012). "Wildland Urban Interface Fires: Managing A Cascade Of Risk". Fire Engineering Magazine 165 (8). Retrieved 18 March 2015. 
  4. ^ "Wildland Type I & Type II". Ferrara Fire. Retrieved 18 March 2015. 
  5. ^ "Wildland Type 1". Pierce MFG. Retrieved 18 March 2015. 
  6. ^ David, Haston. "NFPA 1906 and Wildland Apparatus Design". US Forest Service. Retrieved 6 January 2014. 
  7. ^ a b Standard For Wildland Fire Apparatus (NFPA 1906) (2012 ed.), National Fire Protection Association 
  8. ^ "Engine Types". National Wildfire Coordinating Group. Retrieved 5 January 2014. 
  9. ^ a b Avsec, Robert (23 April 2013). "Pros and cons of tractor-drawn aerials". Fire Recruit. Retrieved 16 March 2015. 
  10. ^ a b c d e Hines, Charlie. "Fire Apparatus Utilized on Emergency Responses - Benefits of a Tiller". City of San Luis Obispo. Fire Chief. Retrieved 16 March 2015. 
  11. ^ "Platform Features". Ferrara Fire. Retrieved 17 March 2015. 
  12. ^ "100' Aluminum Platform". Pierce Mfg. Retrieved 17 March 2015. 
  13. ^ "Glossary". Fire Service Info. Retrieved 5 January 2014. 
  14. ^ "9 - Quint Fire Apparatus", Standard for Automated Fire Apparatus (NFPA 1901) (2009 ed.), National Fire Protection Association, pp. 28–29 
  15. ^ NFPA 1006 Standard for Rescue Technician Professional Qualifications. 2003 Edition. National Fire Protection Association.
  16. ^ NFPA 1670 Standard on Operations and Training for Technical Search and Rescue Incidents. 2004 Edition. National Fire Protection Association.
  17. ^ For example, Helsinki City Transport's tram rescue unit in Fireimages.net, retrieved May 9, 2007.
  18. ^ For example, VR railway rescue squad in Fireimages, retrieved May 9, 2007.
  19. ^ Visiiri 2/2006, pp. 6 – 7, on the heavy rescue unit of VR Railway Company in Helsinki, Finland, Liitin Oy, retrieved May 9, 2007. (Finnish)
  20. ^ "Engine Types". National Wildfire Coordinating Group. Retrieved 5 January 2014. 
  21. ^ "Type 3 Engine". Santa Barbara County Fire. Retrieved 30 December 2013. 
  22. ^ Helsinki Rescue Department
  23. ^ NFPA 1901 Standard for Automotive Fire Apparatus, Chapter 7: Mobile Water Supply Fire Apparatus. 2003 edition. National Fire Protection Association.
  24. ^ Tarvasjoen vpk (Tarvasjoki Voluntary Fire Dept, Finland 2006)
  25. ^ For example, specifications of Amthor International Fire Tankers, www.amthorinternational.com, retrieved April 28, 2007
  26. ^ Example on a 12,500 litres (3,300 US gal; 2,700 imp gal) water tender with 9,000 litres (2,400 US gal; 2,000 imp gal) trailer: Fire Dept. of Kittilä, Regional Rescue Services of Lappi in northern Finland. Fireimages.net, retrieved April 28, 2007.
  27. ^ Petrillo, Alan (29 August 2014). "Protecting Airports with New ARFF Designs and Equipment". Fire Apparatus & Emergency Equipment 19 (9). Retrieved 17 March 2015. 
  28. ^ Vaccaro, Bob (31 July 2008). "Latest ARFF Apparatus Technology". FireRescue (August 2008). Retrieved 17 March 2015. 
  29. ^ "ARFF Airport". KME Kovatch. Retrieved 17 March 2015. 
  30. ^ Walter A, Edgar C, Rutledge M: First Responder Handbook: Fire Service Edition.
  31. ^ Alaspää et al.: Uusi ensihoidon käsikirja. Tammi 2004. (New Handbook on Emergency care) (Finnish)
  32. ^ "Riekerinc.com". Riekerinc.com. Retrieved 2013-12-04. 
  33. ^ Pelastusajoneuvojen yleisopas. (A general guide for rescue vehicles) (In Finnish). Ministry of the Interior, Finland. Pelastustoimi.fi (Finnish), Retrieved April 28, 2007
  34. ^ Young, Charles Frederick T.. Fires, fire engines, and fire brigades: with a history of manual and steam fire engines, their construction, use, and management; remarks on fire-proof buildings ... statistics of the fire appliances in English towns; foreign fire systems; hints for the f. London: Lockwood & Co., 1866. 335. Print.]
  35. ^ Rorer, Beverly, and Barbara Marinelli. Images of America: Upper Darby. Charleston, S.C.: Arcadia Pub., 2011. 112. Print.
  36. ^ Editorial staff (February 1905), "Motor fire engines popular in England", Popular Mechanics 7 (2): 202. 
  37. ^ "Books about Knox Automobile Company - Historical Photos & Images of Knox Automobile Company". Arcadia Publishing. Retrieved 2011-10-24. 

External links[edit]