Purgatorius

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Purgatorius
Temporal range: Paleocene, 66–63Ma
Purgatorius BW.jpg
Life restoration of P. unio
Scientific classification e
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Plesiadapiformes
Genus: Purgatorius
Valen & Sloan, 1965
Type species
Purgatorius unio
Valen & Sloan, 1965
Species

Purgatorius is the genus of the four extinct species believed to be the earliest example of a primate or a proto-primate, a primatomorph precursor to the Plesiadapiformes, dating to as old as 66 million years ago.[1] The first remains (P. unio and P. ceratops) were reported in 1965,[2] from what is now eastern Montana's Tullock Formation (early Paleocene, Puercan), specifically at Purgatory Hill (hence the animal's name) in deposits believed to be about 63 million years old, and at Harbicht Hill in the late Cretaceous Hell Creek Formation. Both locations are in McCone County.

They have also been widely discovered in the early Paleocene Bug Creek fauna, along with other leptictids.[3] These deposits were once thought to be latest Cretaceous, but it is now clear that they are Paleocene channels with time-averaged fossil assemblages. It is thought to have been rat-sized (6 in (15 cm) long and 1.3 ounces (about 37g) and a diurnal insectivore, who burrowed through small holes in the ground.

Currently it is considered one of the few plesiadapiform mammals primitive enough to have possibly given rise to both the plesiadapiformes and the higher primates. Though its classification below the superorder Euarchonta remains uncertain, dental evidence and molar morphology indicate a close link with the primate order.

Description of remains[edit]

Postcanine dentition of P. unio is documented by 13 dentulous, fragmentary mandibles, a fragmentary maxillary and more than 50 isolated teeth from Garbani Locality 80 km west of Purgatory Hill. P. ceratops is represented by an isolated lower molar found at Harbicht Hill, McCone County.[4] The report of the occurrence of Purgatorius in the Late Cretaceous was based on an isolated, worn molar found in a channel filling that contains early Puercan fossils. It is also abundantly represented in Pu 2-3 local faunas in the northern Western interior, suggesting that it came into the area between 64.75 and 64.11 Mya. Due to fragmentary dentition from the Garbani Channel fauna from Purgatorius janisae proves that the lower dental formula was 3.1.4.3.[5]

Dentition[edit]

The type specimen of P. unio, a damaged upper molar, is essentially identical to teeth found at the Garbani Locality. Data from this sample support Van Valen and Sloan's identification of topotypic lower molars, and also demonstrate that the lower dentition of P. unio includes seven postcanines. The alveolus for the single root of P1, crown unknown, is smaller than those for the canine or P2. The second lower pre- molar is smaller than P3; both are two- rooted. The fourth lower premolar is submolariform. A metaconid is lacking, although on some teeth slight thickenings of the enamel are present in this region. Talonid cusps are slightly differentiated. The first and second lower molars are approximately the same length (M1, average length x=- 1.93 mm, N- 13; M2, x=2.00 mm, N- 9); M. is longer (x= 2.32 mm, N -7). Widths of talonids of M1.2 vary from less than to greater than widths of trigonids. Hypoconulid of M. is enlarged, salient, and on some teeth incipiently doubled by addition of a lingual cusp.

Ankle bones[edit]

Bones from the ankle are similar to those of later primates, and were suited for a life up in trees.[6] Named for Paleontologist Dr. Robert Titus.

Relationship[edit]

For many years, there has been a large debate as to whether Purgatorius is a primitive member of the Primates or a basal member of the Plesiadapiforms. Several characters of the dentition of Purgatorius, which includes its incisor morphology, can ally it with later plesiadapiforms. The prism cross sections are highly variable with circular, horseshoe and irregular shapes, while the prisms of cheek teeth are radially arranged.[7] Due to the fragmentary dentaries found in the Garbani Channel fauna from Purgatorius janisae the morphology of the canine and incisor alveoli suggest the derived gradient in the crown size of: I1>or = I2>I3<C. Isolated upper incisors referable from P. janisae exhibit some typical plesiadapiform specializations. Due to general morphology of the postcanine dentition of Purgatorius, it could be expected to be characterized as a primitive member of the Primates. But, due to the specializations of its incsiors of P. janisae it should be considered as a basal member of the Pleasiadapiformes sensu lato.[5]

Notes[edit]

  1. ^ O'Leary, M. A. et al. (2013). "The placental mammal ancestor and the post–K-Pg radiation of placentals". Science: 662–667. doi:10.1126/science.1229237. 
  2. ^ Van Valen, L.; Sloan, R. (1965). "The earliest primates". Science 150 (3697): 743–745. Bibcode:1965Sci...150..743V. doi:10.1126/science.150.3697.743. PMID 5891702. 
  3. ^ Lillegraven, Kielan-Jaworowska & Clemens 1979
  4. ^ Clemens, William (May 24, 1974). "Purgatorius, an Early Paromomyid Primate". Science 184 (4139): 903–05. Bibcode:1974Sci...184..903C. doi:10.1126/science.184.4139.903. PMID 4825891. 
  5. ^ a b Clemens 2004
  6. ^ Kaplan, M. (2012). "Primates were always tree-dwellers". Nature. doi:10.1038/nature.2012.11423.  edit
  7. ^ Clemens, W. A., and W. V. Koenigswald. "Purgatorius, plesiadapiforms, and evolution of Hunter–Schreger bands." J. Vertebr. Paleontol 11 (1991). Cited by Tabuce, Rodolphe; Delmer, Cyrille; Gheerbrant, Emmanuel (2007). "Evolution of the tooth enamel microstructure in the earliest proboscideans (Mammalia)". Zoological Journal of the Linnean Society 149 (4): 611–28. doi:10.1111/j.1096-3642.2007.00272.x. 

References[edit]