Jump to content

Pyridine-N-oxide

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Citation bot (talk | contribs) at 22:41, 4 October 2022 (Alter: pages. Formatted dashes. | Use this bot. Report bugs. | Suggested by Kline | #UCB_webform). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Pyridine-N-oxide
Skeletal formula
Ball-and-stick model
Names
Preferred IUPAC name
5-Pyridin-1-one
Other names
Pyridine-1-oxide
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.010.705 Edit this at Wikidata
UNII
  • InChI=1S/C5H5NO/c7-6-4-2-1-3-5-6/h1-5H checkY
    Key: ILVXOBCQQYKLDS-UHFFFAOYSA-N checkY
  • InChI=1/C5H5NO/c7-6-4-2-1-3-5-6/h1-5H
    Key: ILVXOBCQQYKLDS-UHFFFAOYAZ
  • c1cc[n+](cc1)[O-]
Properties
C5H5NO
Molar mass 95.101 g·mol−1
Appearance Colourless solid
Melting point 65 to 66 °C (149 to 151 °F; 338 to 339 K)
Boiling point 270 °C (518 °F; 543 K)
high
Acidity (pKa) 0.8 (of conjugate acid)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Pyridine-N-oxide is the heterocyclic compound with the formula C5H5NO. This colourless, hygroscopic solid is the product of the oxidation of pyridine. It was originally prepared using peroxyacids as the oxidising agent. The compound is used infrequently as an oxidizing reagent in organic synthesis.[1]

Structure

The structure of pyridine-N-oxide is very similar to that of pyridine with respect to the parameters for the ring. The molecule is planar. The N-O distance is 1.34 Å. The C-N-C angle is 124°, 7° wider than in pyridine.[2]

Synthesis

The oxidation of pyridine can be achieved with a number of peracids including peracetic acid and perbenzoic acid.[3] Oxidation can also be effected by a modified Dakin reaction using a urea-hydrogen peroxide complex,[4] and sodium perborate[5] or, using methylrhenium trioxide (CH
3
ReO
3
) as catalyst, with sodium percarbonate.[6]

Reactions

Pyridine N-oxide is five orders of magnitude less basic than pyridine,[7] but it is isolable as a hydrochloride salt, [C5H5NOH]Cl.[3] Further demonstrating its (feeble) basicity, pyridine-N-oxide also serves as a ligand in coordination chemistry.

Treatment of the pyridine-N-oxide with phosphorus oxychloride gives 4- and 2-chloropyridines.[8]

The N-oxides of various pyridines are precursors to useful drugs:[9]

Safety

The compound is a skin irritant.[1]

Further reading

  • discovery of pyridine-N-oxide: Meisenheimer, Jakob (1926). "Über Pyridin-, Chinolin- und Isochinolin-N-oxyd". Ber. Dtsch. Chem. Ges. (in German). 59 (8): 1848–1853. doi:10.1002/cber.19260590828.
  • Synthesis of N-oxides from substituted pyridines: Youssif, Shaker (2001). "Recent trends in the chemistry of pyridine N-oxides". Arkivoc. 2001: 242–268. doi:10.3998/ark.5550190.0002.116.

References

  1. ^ a b Kilényi, S. Nicholas; Mousseau, James J. (20 September 2015). "PyridineN-Oxide". Pyridine N-Oxide. Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons. pp. 1–6. doi:10.1002/047084289X.rp283.pub2. ISBN 9780470842898.
  2. ^ Ülkü, D.; Huddle, B. P.; Morrow, J. C. (1971). "The Crystal Structure of Pyridine 1-oxide". Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. 27 (2): 432–436. doi:10.1107/S0567740871002334.
  3. ^ a b Mosher, H. S.; Turner, L.; Carlsmith, A. (1953). "Pyridine-N-oxide". Org. Synth. 33: 79. doi:10.15227/orgsyn.033.0079.
  4. ^ Varma, Rajender S.; Naicker, Kannan P. (1999). "The Urea−Hydrogen Peroxide Complex: Solid-State Oxidative Protocols for Hydroxylated Aldehydes and Ketones (Dakin Reaction), Nitriles, Sulfides, and Nitrogen Heterocycles". Org. Lett. 1 (2): 189–192. doi:10.1021/ol990522n.
  5. ^ McKillop, Alexander; Kemp, Duncan (1989). "Further functional group oxidations using sodium perborate". Tetrahedron. 45 (11): 3299–3306. doi:10.1016/S0040-4020(01)81008-5.
  6. ^ Jain, Suman L.; Joseph, Jomy K.; Sain, Bir (2006). "Rhenium-Catalyzed Highly Efficient Oxidations of Tertiary Nitrogen Compounds to N-Oxides Using Sodium Percarbonate as Oxygen Source". Synlett. 2006 (16): 2661–2663. doi:10.1055/s-2006-951487.
  7. ^ pKa ~1 Foffani, Antonio; Mazzucato, Ugo (1956). "Acid-base equilibriums. I. N-Oxides of pyridine and nicotinic acid". Ricerca Sci. 26: 2409–16.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ Scriven, E. F. V. (1984). "Pyridines and their Benzo Derivatives: (ii) Reactivity at Ring Atoms". In Katritzky, Alan R.; Rees, Charles Wayne; Meth-Cohn, Otto (eds.). Comprehensive Heterocyclic Chemistry: The Structure, Reactions, Synthesis and Uses of Heterocyclic Compounds. Vol. 2. Pergamon Press. pp. 165–314. doi:10.1016/B978-008096519-2.00027-8. ISBN 9780080307015.
  9. ^ Shimizu, Shinkichi; Watanabe, Nanao; Kataoka, Toshiaki; Shoji, Takayuki; Abe, Nobuyuki; Morishita, Sinji; Ichimura, Hisao (2000). "Pyridine and Pyridine Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a22_399. ISBN 3527306730.