Quarter cubic honeycomb

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Quarter cubic honeycomb
Bitruncated alternated cubic tiling.png HC A1-P1.png
Type Uniform honeycomb
Family Truncated simplectic honeycomb
Quarter hypercubic honeycomb
Indexing[1] J25,33, A13
W10, G6
Schläfli symbol t0,1{3[4]} or q{4,3,4}
Coxeter-Dynkin diagram CDel branch 11.pngCDel 3ab.pngCDel branch.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png = CDel branch.pngCDel 4a4b.pngCDel nodes h1h1.png
Cell types {3,3} Tetrahedron.png
(3.6.6) Truncated tetrahedron.png
Face types {3}, {6}
Vertex figure T01 quarter cubic honeycomb verf.png
(isosceles triangular antiprism)
Space group Fd3m (227)
Coxeter group {\tilde{A}}_3×2, [[3[4]]] (double)
Dual oblate cubille
(Trigonal trapezohedral honeycomb)
Properties vertex-transitive, edge-transitive

The quarter cubic honeycomb, quarter cubic cellulation or bitruncated alternated cubic honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of tetrahedra and truncated tetrahedra in a ratio of 1:1. It is called "quarter-cubic" because its symmetry unit – the minimal block from which the pattern is developed by reflections – consists of four such units of the cubic honeycomb.

It is vertex-transitive with 6 truncated tetrahedra and 2 tetrahedra around each vertex.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

It is one of the 28 convex uniform honeycombs.

The faces of this honeycomb's cells form four families of parallel planes, each with a 3.6.3.6 tiling.

Its vertex figure is an isosceles antiprism: two equilateral triangles joined by six isosceles triangles.

John Horton Conway calls this honeycomb a truncated tetrahedrille, and its dual oblate cubille.

Construction[edit]

The quarter cubic honeycomb can be constructed in slab layers of truncated tetrahedra and tetrahedral cells, seen as two trihexagonal tilings. Two tetrahedra are stacked by a vertex and a central inversion. In each trihexagonal tiling, half of the triangles belong to tetrahedra, and half belong to truncated tetrahedra. These slab layers must be stacked with tetrahedra triangles to truncated tetrahedral triangles to construct the uniform quarter cubic honeycomb. Slab layers of hexagonal prisms and triangular prisms can be alternated for elongated honeycombs, but these are also not uniform.

Tetrahedral-truncated tetrahedral honeycomb slab.png Uniform tiling 333-t01.png
trihexagonal tiling: CDel node.pngCDel split1.pngCDel branch 11.png

Symmetry[edit]

Cells can be shown in two different symmetries. The reflection generated form represented by its Coxeter-Dynkin diagram has two colors of truncated cuboctahedra. The symmetry can be doubled by relating the pairs of ringed and unringed nodes of the Coxeter-Dynkin diagram, which can been shown with one colored tetrahedral and truncated tetrahedral cells.

Two uniform colorings
Symmetry {\tilde{A}}_3, [3[4]] {\tilde{A}}_3×2, [[3[4]]]
Space group F43m (216) Fd3m (227)
Coloring Quarter cubic honeycomb.png Quarter cubic honeycomb2.png
Vertex figure T01 quarter cubic honeycomb verf.png T01 quarter cubic honeycomb verf2.png
Vertex
figure
symmetry
C3v
[3]
(*33)
order 6
D3d
[2+,6]
(2*3)
order 12

Related polyhedra[edit]

Six-hexagon skew polyhedron.png
The subset of hexagonal faces of thus honeycomb contains an infinite regular skew polyhedron {6,6|3}.
Tiling Semiregular 3-6-3-6 Trihexagonal.svg
Four sets of parallel planes of trihexagonal tilings exist throughout this honeycomb.

This honeycomb is one of five distinct uniform honeycombs[2] constructed by the {\tilde{A}}_3 Coxeter group. The symmetry can be multiplied by the symmetry of rings in the Coxeter–Dynkin diagrams:

Space
group
Fibrifold Square
symmetry
Extended
symmetry
Extended
diagram
Extended
order
Honeycomb diagrams
F43m
(216)
1o:2 a1 [3[4]] CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png ×1 (None)
Fd3m
(227)
2+:2 p2 [[3[4]]] CDel branch 11.pngCDel 3ab.pngCDel branch.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
×2 CDel branch 11.pngCDel 3ab.pngCDel branch.png 3
Fm3m
(225)
2:2 d2 <[3[4]]>
↔ [4,3,31,1]
CDel node c3.pngCDel split1.pngCDel nodeab c1-2.pngCDel split2.pngCDel node c3.png
CDel node.pngCDel 4.pngCDel node c3.pngCDel split1.pngCDel nodeab c1-2.png
×2 CDel node.pngCDel split1.pngCDel nodes 10luru.pngCDel split2.pngCDel node.png 1,CDel node 1.pngCDel split1.pngCDel nodes 10luru.pngCDel split2.pngCDel node 1.png 2
Pm3m
(221)
4:2 d4 [2[3[4]]]
↔ [4,3,4]
CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel split2.pngCDel node c1.png
CDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node.png
×4 CDel node.pngCDel split1.pngCDel nodes 11.pngCDel split2.pngCDel node.png 4
Im3m
(229)
8o:2 r8 [4[3[4]]]
↔ [[4,3,4]]
CDel branch c1.pngCDel 3ab.pngCDel branch c1.png
CDel branch c1.pngCDel 4a4b.pngCDel nodes.png
×8 CDel branch 11.pngCDel 3ab.pngCDel branch 11.png 5, CDel branch hh.pngCDel 3ab.pngCDel branch hh.png (*)
Space
group
Fibrifold Extended
symmetry
Extended
diagram
Order Honeycombs
Pm3m
(221)
4:2 [4,3,4] CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 4.pngCDel node c4.png ×1 CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 1, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 2, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 3, CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png 4,
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png 5, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png 6
Fm3m
(225)
2:2 [1+,4,3,4]
↔ [4,31,1]
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node c2.png
CDel nodes 10ru.pngCDel split2.pngCDel node c1.pngCDel 4.pngCDel node c2.png
Half CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 7, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png 11, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png 12, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png 13
I43m
(217)
4o:2 [[(4,3,4,2+)]] CDel branch.pngCDel 4a4b.pngCDel nodes hh.png Half × 2 CDel branch.pngCDel 4a4b.pngCDel nodes hh.png (7),
Fd3m
(227)
2+:2 [[1+,4,3,4,1+]]
↔ [[3[4]]]
CDel branch.pngCDel 4a4b.pngCDel nodes h1h1.png
CDel branch 11.pngCDel 3ab.pngCDel branch.png
Quarter × 2 CDel branch.pngCDel 4a4b.pngCDel nodes h1h1.png 10,
Im3m
(229)
8o:2 [[4,3,4]] CDel branch c2.pngCDel 4a4b.pngCDel nodeab c1.png ×2

CDel branch.pngCDel 4a4b.pngCDel nodes 11.png (1), CDel branch 11.pngCDel 4a4b.pngCDel nodes.png 8, CDel branch 11.pngCDel 4a4b.pngCDel nodes 11.png 9

See also[edit]

References[edit]

  1. ^ For cross-referencing, they are given with list indices from Andreini (1-22), Williams(1-2,9-19), Johnson (11-19, 21-25, 31-34, 41-49, 51-52, 61-65), and Grünbaum(1-28).
  2. ^ [1], A000029 6-1 cases, skipping one with zero marks
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN 978-1-56881-220-5 (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, Architectonic and Catoptric tessellations, p 292-298, includes all the nonprismatic forms)
  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
  • Branko Grünbaum, Uniform tilings of 3-space. Geombinatorics 4(1994), 49 - 56.
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X. 
  • Critchlow, Keith (1970). Order in Space: A design source book. Viking Press. ISBN 0-500-34033-1. 
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [2]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
  • A. Andreini, Sulle reti di poliedri regolari e semiregolari e sulle corrispondenti reti correlative (On the regular and semiregular nets of polyhedra and on the corresponding correlative nets), Mem. Società Italiana della Scienze, Ser.3, 14 (1905) 75–129.
  • D. M. Y. Sommerville, An Introduction to the Geometry of n Dimensions. New York, E. P. Dutton, 1930. 196 pp. (Dover Publications edition, 1958) Chapter X: The Regular Polytopes
  • Richard Klitzing, 3D Euclidean Honeycombs, x3x3o3o3*a - batatoh - O27
  • Uniform Honeycombs in 3-Space: 15-Batatoh