Quaternary ammonium cation

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Quaternary ammonium cation. The R groups may be the same or different alkyl or aryl groups. Also, the R groups may be connected.

Quaternary ammonium cations, also known as quats, are positively charged polyatomic ions of the structure NR4+, R being an alkyl group or an aryl group.[1] Unlike the ammonium ion (NH4+) and the primary, secondary, or tertiary ammonium cations, the quaternary ammonium cations are permanently charged, independent of the pH of their solution. Quaternary ammonium salts or quaternary ammonium compounds (called quaternary amines in oilfield parlance) are salts of quaternary ammonium cations with an anion.

Synthesis[edit]

Quaternary ammonium compounds are prepared by alkylation of tertiary amines, in a process called quaternization.[2] Typically one of the alkyl groups on the amine is larger than the others.[3] A typical synthesis is for benzalkonium chloride from a long-chain alkyldimethylamine and benzyl chloride:

CH3(CH2)nN(CH3)2 + ClCH2C6H5 → [CH3(CH2)nN(CH3)2CH2C6H5]+Cl-

Reactions[edit]

While not very reactive, quaternary ammonium salts undergo Sommelet–Hauser rearrangement[4] and Stevens rearrangement,[5] as well as dealkylation under harsh conditions. Quaternary ammonium cations can also undergo the Hofmann Elimination and Emde degradation if there are hydrogens beta to the nitrogen.

Applications[edit]

Quaternary ammonium salts are used as disinfectants, surfactants, fabric softeners, and as antistatic agents (e.g. in shampoos). In liquid fabric softeners, the chloride salts are often used. In dryer anticling strips, the sulfate salts are often used. Spermicidal jellies also contain quaternary ammonium salts.

As antimicrobials[edit]

Quaternary ammonium compounds have also been shown to have antimicrobial activity.[6] Certain quaternary ammonium compounds, especially those containing long alkyl chains, are used as antimicrobials and disinfectants. Examples are benzalkonium chloride, benzethonium chloride, methylbenzethonium chloride, cetalkonium chloride, cetylpyridinium chloride, cetrimonium, cetrimide, dofanium chloride, tetraethylammonium bromide, didecyldimethylammonium chloride and domiphen bromide. Also good against fungi, amoeba, and enveloped viruses,[7] quats are believed to act by disrupting the cell membrane.[citation needed] Quaternary ammonium compounds are lethal to a wide variety of organisms except endospores, Mycobacterium tuberculosis and non-enveloped viruses.

In contrast to phenolics, quaternary ammonium compounds are not very effective in the presence of organic compounds. Yet, they are very effective in combination with phenols. Quaternary ammonium compounds are deactivated by soaps, other anionic detergents, and cotton fibers.[7] Also, they are not recommended for use in hard water. Effective levels are at 200 ppm.[8] They are effective at temperatures up to 212 °F (100 °C).

Quaternary ammonium salts are popular chemicals used in foodservice industry as sanitizing agents.

As phase transfer catalysts[edit]

In organic synthesis, quaternary ammonium salts are employed as phase transfer catalysts (PTC). Such catalysts accelerate reactions between reagents dissolved in immiscible solvents. The highly reactive reagent dichlorocarbene is generated via PTC by reaction of chloroform and sodium hydroxide.

Osmolytes[edit]

Quaternary ammonium compounds are present in osmolytes, specifically glycine betaine, which stabilize osmotic pressure in cells.[9]

Plant growth retardants[edit]

Cycocel (chlormequat chloride) reduces plant height by inhibiting the production of gibberellins, the primary plant hormones responsible for cell elongation. Therefore, their effects are primarily on stem, petiole and flower stalk tissues. Lesser effects are seen in reductions of leaf expansion, resulting in thicker leaves with darker green color.[10]

Health effects[edit]

Quaternary ammonium compounds can display a range of health effects, amongst which are mild skin and respiratory irritation [11] up to severe caustic burns on skin and gastro-intestinal lining (depending on concentration), gastro-intestinal symptoms (e.g., nausea and vomiting), coma, convulsions, hypotension and death.[12]

They are thought to be the chemical group responsible for anaphylactic reactions that occur with use of neuromuscular blocking drugs during general anaesthesia in surgery.[13] Quaternium-15 is the single most often found cause of allergic contact dermatitis of the hands (16.5% in 959 cases)[14]

Reproductive effects of trace amounts[edit]

Quaternary ammonium-based disinfectants (Virex and Quatricide) were tentatively identified (by researcher Patricia Hunt - who previously uncovered the reproductive system effects of bisphenol A) and were also identified by researchers at other labs, as the most probable cause of jumps in birth defects and fertility problems in caged lab mice.[15]

Quantification[edit]

As quaternary ammonium compounds are classified as large volume chemicals (extensively used as antimicrobial agents, herbicides and detergents), they are one of the major environmental contaminants. Therefore, it is of interest to know about their impact on ecosystem. However, their quantification from environmental and biological samples is a major problem using conventional chromatography techniques as they are highly soluble in water. Interestingly, while analyzing them by liquid chromatography coupled tandem mass spectrometry it has been found that they follow an exception rule. Under standard electrospray ionization (ESI) conditions mono- and di-quaternary ammonium compounds form molecular ions with the formula of m^q / z^q rather than ( m + z )/ z. Formation of m^q / 2 is observed for di-quaternary ammonium compounds (like diquat) as precursor ion and m^q / 1 as product ion due to the loss of one of the quaternary charge during CID. In di-quaternary ammonium compounds, this process can also result in the formation of fragment ions with higher mass as compared to their precursor ion. Hydrophilic interaction liquid chromatographic separation has been reported to demonstrate a successful separation of quaternary ammonium compounds for their quantification in ESI-MS/MS with higher precision.[16]

See also[edit]

References[edit]

  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "quaternary ammonium compounds".
  2. ^ Smith, Michael B.; March, Jerry (2001), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (5th ed.), New York: Wiley-Interscience, ISBN 0-471-58589-0 
  3. ^ Kosswig, K. “Surfactants” in Ullmann’s Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim. doi:10.1002/14356007.a25_747.
  4. ^ W. R. Brasen; C. R. Hauser (1963), "2-Methylbenzyldimethylamine", Org. Synth. ; Coll. Vol. 4: 585 
  5. ^ Pine, Stanley H. (2011). "The Base-Promoted Rearrangements of Quaternary Ammonium Salts". Organic Reactions. doi:10.1002/0471264180.or018.04. ISBN 0471264180. 
  6. ^ Jia, Zhishen; Shen, Dongfeng; Xu, Weiliang (2001). "Synthesis and antibacterial activities of quaternary ammonium salt of chitosan". Carbohydrate Research 333 (1): 1–6. doi:10.1016/S0008-6215(01)00112-4. PMID 11423105. 
  7. ^ a b Specific Antimicrobials, outline of lecture by Stephen T. Abedon, Ohio State U., URL accessed Dec 2008.
  8. ^ The Use of Disinfectants In the Swine Industry, Mark G. Ladd, North Carolina State Univ., URL accessed Jul 2014.
  9. ^ http://dx.doi.org/10.1128/AEM.67.6.2692-2698.2001 Sleator, Roy D., Wouters, Jeroen, Gahan, Cormac G. M., Abee, Tjakko, Hill, Colin Analysis of the Role of OpuC, an Osmolyte Transport System, in Salt Tolerance and Virulence Potential of Listeria monocytogenes Appl. Environ. Microbiol. 2001 67: 2692-2698
  10. ^ http://users.in.gr/dimpet/thesis/growth_retardants.htm Wageningen Agricultural University, The Netherlands
  11. ^ Bello, Anila; Quinn, Margaret M; Perry, Melissa J; Milton, Donald K (2009). "Characterization of occupational exposures to cleaning products used for common cleaning tasks-a pilot study of hospital cleaners". Environmental Health 8: 11. doi:10.1186/1476-069X-8-11. PMC 2678109. PMID 19327131. 
  12. ^ Quaternary ammonium (PIM G022)
  13. ^ Harper, NJ; Dixon, T; Dugué, P; Edgar, DM; Fay, A; Gooi, HC; Herriot, R; Hopkins, P; Hunter, JM; Mirakian, R; Pumphrey, RS; Seneviratne, SL; Walls, AF; Williams, P; Wildsmith, JA; Wood, P; Nasser, AS; Powell, RK; Mirakhur, R; Soar, J; Working Party of the Association of Anaesthetists of Great Britain Ireland (2009). "Suspected anaphylactic reactions associated with anaesthesia". Anaesthesia 64 (2): 199–211. doi:10.1111/j.1365-2044.2008.05733.x. PMC 3082210. PMID 19143700. 
  14. ^ Warshaw, EM; Ahmed, RL; Belsito, DV; Deleo, VA; Fowler Jr, JF; Maibach, HI; Marks Jr, JG; Toby Mathias, CG; Pratt, MD; Rietschel, RL; Sasseville, D; Storrs, FJ; Taylor, JS; Zug, KA; North American Contact Dermatitis Group (2007). "Contact dermatitis of the hands: Cross-sectional analyses of North American Contact Dermatitis Group Data, 1994-2004". Journal of the American Academy of Dermatology 57 (2): 301–14. doi:10.1016/j.jaad.2007.04.016. PMID 17553593. 
  15. ^ Hunt, P (June 2008). "Lab disinfectant harms mouse fertility. Patricia Hunt interviewed by Brendan Maher". Nature 453 (7198): 964. doi:10.1038/453964a. PMID 18563110. 
  16. ^ Thirumurthy Velpandiana; Jayabalan Nirmala; Beauty Aroraa; Alok Kumar Ravia; Ankita Kotnalaa (October 2012). "Understanding the Charge Issues in Mono and di-Quaternary Ammonium Compounds for Their Determination by LC/ESI-MS/MS". Analytical Letters 45 (16): 2367–2376. doi:10.1080/00032719.2012.693140. 

External links[edit]