Rectified 5-orthoplexes

From Wikipedia, the free encyclopedia
  (Redirected from Rectified 5-orthoplex)
Jump to: navigation, search
5-cube t0.svg
5-cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cube t1.svg
Rectified 5-cube
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cube t2.svg
Birectified 5-cube
Birectified 5-orthoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cube t4.svg
5-orthoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-cube t3.svg
Rectified 5-orthoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Orthogonal projections in A5 Coxeter plane

In five-dimensional geometry, a rectified 5-orthoplex is a convex uniform 5-polytope, being a rectification of the regular 5-orthoplex.

There are 5 degrees of rectifications for any 5-polytope, the zeroth here being the 5-orthoplex itself, and the 4th and last being the 5-cube. Vertices of the rectified 5-orthoplex are located at the edge-centers of the 5-orthoplex. Vertices of the birectified 5-orthoplex are located in the triangular face centers of the 5-orthoplex.

Rectified 5-orthoplex[edit]

Rectified pentacross
Type uniform polyteron
Schläfli symbol t1{3,3,3,4}
Coxeter-Dynkin diagrams CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
Hypercells 42 total:
10 {3,3,4}
32 t1{3,3,3}
Cells 240 total:
80 {3,4}
160 {3,3}
Faces 400 total:
80+320 {3}
Edges 240
Vertices 40
Vertex figure Rectified pentacross verf.png
Octahedral prism
Petrie polygon Decagon
Coxeter groups BC5, [3,3,3,4]
D5, [32,1,1]
Properties convex

Its 40 vertices represent the root vectors of the simple Lie group D5. The vertices can be seen in 3 hyperplanes, with the 10 vertices rectified 5-cells cells on opposite sides, and 20 vertices of a runcinated 5-cell passing through the center. When combined with the 10 vertices of the 5-orthoplex, these vertices represent the 50 root vectors of the B5 and C5 simple Lie groups.

Alternate names[edit]

  • rectified pentacross
  • rectified triacontiditeron (32-faceted polyteron)

Construction[edit]

There are two Coxeter groups associated with the rectified pentacross, one with the C5 or [4,3,3,3] Coxeter group, and a lower symmetry with two copies of 16-cell facets, alternating, with the D5 or [32,1,1] Coxeter group.

Cartesian coordinates[edit]

Cartesian coordinates for the vertices of a rectified pentacross, centered at the origin, edge length  \sqrt{2}\ are all permutations of:

(±1,±1,0,0,0)

Images[edit]

orthographic projections
Coxeter plane B5 B4 / D5 B3 / D4 / A2
Graph 5-cube t3.svg 5-cube t3 B4.svg 5-cube t3 B3.svg
Dihedral symmetry [10] [8] [6]
Coxeter plane B2 A3
Graph 5-cube t3 B2.svg 5-cube t3 A3.svg
Dihedral symmetry [4] [4]

Related polytopes[edit]

The rectified 5-orthoplex is the vertex figure for the 5-demicube honeycomb:

CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png or CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

This polytope is one of 31 uniform polytera generated from the regular 5-cube or 5-orthoplex.

5-cube t4.svg
β5
5-cube t3.svg
t1β5
5-cube t2.svg
t2γ5
5-cube t1.svg
t1γ5
5-cube t0.svg
γ5
5-cube t34.svg
t0,1β5
5-cube t24.svg
t0,2β5
5-cube t23.svg
t1,2β5
5-cube t14.svg
t0,3β5
5-cube t13.svg
t1,3γ5
5-cube t12.svg
t1,2γ5
5-cube t04.svg
t0,4γ5
5-cube t03.svg
t0,3γ5
5-cube t02.svg
t0,2γ5
5-cube t01.svg
t0,1γ5
5-cube t234.svg
t0,1,2β5
5-cube t134.svg
t0,1,3β5
5-cube t124.svg
t0,2,3β5
5-cube t123.svg
t1,2,3γ5
5-cube t034.svg
t0,1,4β5
5-cube t024.svg
t0,2,4γ5
5-cube t023.svg
t0,2,3γ5
5-cube t014.svg
t0,1,4γ5
5-cube t013.svg
t0,1,3γ5
5-cube t012.svg
t0,1,2γ5
5-cube t1234.svg
t0,1,2,3β5
5-cube t0234.svg
t0,1,2,4β5
5-cube t0134.svg
t0,1,3,4γ5
5-cube t0124.svg
t0,1,2,4γ5
5-cube t0123.svg
t0,1,2,3γ5
5-cube t01234.svg
t0,1,2,3,4γ5

Notes[edit]

References[edit]

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Richard Klitzing, 5D, uniform polytopes (polytera) o3x3o3o4o - rat

External links[edit]