Reduction of nitro compounds

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The chemical reactions described as reduction of nitro compounds can be facilitated by many different reagents and reaction conditions. Historically, the nitro group was one of the first functional groups to be reduced, due to the ease of nitro-group reduction.

Nitro-groups behave differently whether a neighboring hydrogen is present or not. Thus, reduction conditions can be initially classified by starting materials: aliphatic nitro compounds or aromatic nitro compounds. Secondary classifications are based upon reaction products.

Aliphatic nitro compounds[edit]

Reduction to hydrocarbons[edit]

Generalization of the reduction of a nitroalkane to an alkane

Hydrodenitration (replacement of a nitro group with hydrogen) is difficult to achieve, but can be completed by catalytic hydrogenation over platinum on silica gel at high temperatures.[1]

Reduction to amines[edit]

Generalization of the reduction of a nitroalkane to an amine

Aliphatic nitro compounds can be reduced to aliphatic amines using several different reagents:

α,β-Unsaturated nitro compounds can be reduced to saturated amines using:

Reduction to hydroxylamines[edit]

Aliphatic nitro compounds can be reduced to aliphatic hydroxylamines using diborane.[7]

Generalization of the reduction of a nitroalkane to a hydroxylamine

The reaction can also be carried out with zinc dust and ammonium chloride[citation needed]:

R-NO2 + 4 NH4Cl + 2 Zn → R-NH-OH + 2 ZnCl2 + 4 NH3 + H2O

Reduction to oximes[edit]

Generalization of the reduction of a nitroalkane to an oxime

Nitro compounds are typically reduced to oximes using metal salts, such as stannous chloride[8] or chromium(II) chloride.[9] Additionally, catalytic hydrogenation using a controlled amount of hydrogen can generate oximes.[10]

Aromatic nitro compounds[edit]

The reduction of aryl nitro compounds can be finely tuned to obtain a different products typically in high yields.

Reduction to anilines[edit]

Generalization of the reduction of a nitroarene to aniline

Many methods for the production of anilines from aryl nitro compounds exist, such as:

It is also possible to form a 3-nitroaniline by reduction of a 1,3-dinitrobenzene using sodium sulfide.[17]

Metal hydrides are typically not used to reduce aryl nitro compounds to anilines because they tend to produce azo compounds. (See below)

Reduction to hydroxylamines[edit]

Several methods for the production of aryl hydroxylamines from aryl nitro compounds exist:

Reduction to hydrazino compounds[edit]

Treatment of nitroarenes with excess zinc metal results in the formation of N,N'-diarylhydrazine.[21]

Reduction to azo compounds[edit]

Generalization of the reduction of a nitroarene to an azo compound

Treatment of aromatic nitro compounds with metal hydrides gives good yields of azo compounds. For example, one could use:

Reduction to azoxy compounds[edit]


  1. ^ M. J. Guttieri and W. F. Maier (1984). "Selective cleavage of carbon-nitrogen bonds with platinum". J. Org. Chem. 49 (16): 2875–2880. doi:10.1021/jo00190a006. 
  2. ^ A. T. Nielsen (1962). "The Isomeric Dinitrocyclohexanes. II. Stereochemistry". J. Org. Chem. 27 (6): 1998–2001. doi:10.1021/jo01053a019. 
  3. ^ Dauben, Jr., H. J.; Ringold, H. J.; Wade, R. H.; Pearson, D. L.; Anderson, Jr., A. G. (1963), "Cycloheptanone", Org. Synth. ; Coll. Vol. 4: 221 
  4. ^ Senkus, M. (1948). Ind. Eng. Chem. 40. p. 506. 
  5. ^ A. S. Kende and J. S. Mendoza (1991). "Controlled reduction of nitroalkanes to alkyl hydroxylamines or amines by samarium diiodide". Tetrahedron Letters 32 (14): 1699–1702. doi:10.1016/S0040-4039(00)74307-3. 
  6. ^ A. Burger, M. L. Stein and J. B. Clements (1957). "Some Pyridylnitroalkenes, Nitroalkanols, and Alkylamines". J. Org. Chem. 22 (2): 143–144. doi:10.1021/jo01353a010. 
  7. ^ H. Feuer, R. S. Bartlett, B. F. Vincent and R. S. Anderson (1965). "Diborane Reduction of Nitro Salts. A New Synthesis of N-Monosubstituted Hydroxylamines". J. Org. Chem. 30 (9): 2880–2882. doi:10.1021/jo01020a002. 
  8. ^ Braun, V. J.; Sobecki, W. (1911). "Über primäre Dinitro-, Nitronitrit- und Dialdoxim-Verbindungen der Fettreihe". Ber. 44 (3): 2526–2534. doi:10.1002/cber.19110440377. 
  9. ^ J. R. Hanson and E. Premuzic (1967). "Applications of chromous chloride--II : The reduction of some steroidal nitro-compounds". Tetrahedron 23 (10): 4105–4110. doi:10.1016/S0040-4020(01)97921-9. 
  10. ^ C. Grundmann (1950). "Über die partielle Reduktion von Nitro-cyclohexan". Angewandte Chemie 62 (23-24): 558–560. doi:10.1002/ange.19500622304. 
  11. ^ Bavin, P. M. G. (1973), "2-Aminofluorene", Org. Synth. ; Coll. Vol. 5: 30 
  12. ^ Allen, C. F. H.; VanAllan, J. (1955)), "2-Amino-p-cymene", Org. Synth.  ; Coll. Vol. 3: 63 
  13. ^ Fox, B. A.; Threlfall, T. L. (1973), "2,3-Diaminopyridine", Org. Synth. ; Coll. Vol. 5: 346 
  14. ^ Redemann, C. T.; Redemann, C. E. (1955), "5-Amino-2,3-dihydro-1,4-phthalazinedione", Org. Synth. ; Coll. Vol. 3: 69 
  15. ^ Faul, Margaret M.; Thiel, Oliver R. (2005). Tin(II) Chloride. "Encyclopedia of Reagents for Organic Synthesis". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rt112.pub2. ISBN 9780470842898. 
  16. ^ Basu, M. K. (2000). "Ultrasound-promoted highly efficient reduction of aromatic nitro compounds to the aromatic amines by samarium/ammonium chloride". Tet. Lett. 41 (30): 5603. doi:10.1016/S0040-4039(00)00917-5. 
  17. ^ Hartman, W. W.; Silloway, H. L. (1955), "2-Amino-4-nitrophenol", Org. Synth. ; Coll. Vol. 3: 82 
  18. ^ Ayyangar, N. R.; Brahme, K. C.; Kalkote, U. R.; Srinivasan, K. V. (1984). "Facile Transfer-Reduction of Nitroarenes to N Arylhydroxylamines with Hydrazine in the Presence of Raney Nickel". Synthesis 1984 (11): 938. doi:10.1055/s-1984-31027. 
  19. ^ Harman, R. E. (1963), "Chloro-p-benzoquinone", Org. Synth. ; Coll. Vol. 4: 148 
  20. ^ Kamm, O. (1941), "β-Phenylhydroxylamine", Org. Synth. ; Coll. Vol. 1: 445 
  21. ^ a b Bigelow, H. E.; Robinson, D. B. (1955), "Azobenzene", Org. Synth. ; Coll. Vol. 3: 103 
  22. ^ R. F. Nystrom and W. G. Brown (1948). "Reduction of Organic Compounds by Lithium Aluminum Hydride. III. Halides, Quinones, Miscellaneous Nitrogen Compounds". J. Am. Chem. Soc. 70 (11): 3738–3740. doi:10.1021/ja01191a057. PMID 18102934.