Rhombitrihexagonal tiling

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Rhombitrihexagonal tiling
Rhombitrihexagonal tiling
Type Semiregular tiling
Vertex configuration 3.4.6.4
Schläfli symbol rr{6,3}
Wythoff symbol 3 | 6 2
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Symmetry p6m, [6,3], (*632)
Rotation symmetry p6, [6,3]+, (632)
Bowers acronym Rothat
Dual Deltoidal trihexagonal tiling
Properties Vertex-transitive
Rhombitrihexagonal tiling
Vertex figure: 3.4.6.4

In geometry, the rhombitrihexagonal tiling is a semiregular tiling of the Euclidean plane. There are one triangle, two squares, and one hexagon on each vertex. It has Schläfli symbol of rr{3,6}.

John Conway calls it a rhombihexadeltille.[1] It can be considered a cantellated by Norman Johnson's terminology or an expanded hexagonal tiling by Alicia Boole Stott's operational language.

There are 3 regular and 8 semiregular tilings in the plane.

Uniform colorings[edit]

There is only one uniform coloring in a rhombitrihexagonal tiling. (Naming the colors by indices around a vertex (3.4.6.4): 1232.)

With edge-colorings there is a half symmetry form (3*3) orbifold notation. The hexagons can be considered as truncated triangles, t{3} with two types of edges. It has Coxeter diagram CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node 1.png, Schläfli symbol s2{3,6}. The bicolored square can be distorted into isosceles trapezoids. In the limit, where the rectangles degenerate into edges, a triangular tiling results, constructed as a snub triangular tiling, CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png.

Symmetry [6,3], (*632) [6,3+], (3*3)
Name Rhombitrihexagonal Cantic snub triangular Snub triangular
Image Rhombitrihexagonal tiling uniform coloring.png
Uniform face coloring
Rhombitrihexagonal tiling snub edge coloring.png
Uniform edge coloring
Rhombitrihexagonal tiling snub edge coloring nonuniform.png
Nonuniform geometry
Snub triangular tiling with rhombitrihexagonal coloring.png
Limit
Schläfli
symbol
rr{3,6} s2{3,6} s{3,6}
Coxeter
diagram
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node 1.png CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png

Examples[edit]

Wallpaper group-p6m-4.jpg
An ornamental version
Wallpaper group-p3m1-1.jpg
Nonuniform pattern
(with rectangles)
Kensington board.svg
The game Kensington

Related polyhedra and tilings[edit]

There are eight uniform tilings that can be based from the regular hexagonal tiling (or the dual triangular tiling). Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms, 7 which are topologically distinct. (The truncated triangular tiling is topologically identical to the hexagonal tiling.)

Uniform hexagonal/triangular tilings
Symmetry: [6,3], (*632) [6,3]+
(632)
[1+,6,3]
(*333)
[6,3+]
(3*3)
{6,3} t{6,3} r{6,3}
r{3[3]}
t{3,6}
t{3[3]}
{3,6}
{3[3]}
rr{6,3}
s2{6,3}
tr{6,3} sr{6,3} h{6,3}
{3[3]}
h2{6,3}
r{3[3]}
s{3,6}
s{3[3]}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel branch 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel branch 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel branch.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png =
CDel branch 10ru.pngCDel split2.pngCDel node.png or CDel branch 01rd.pngCDel split2.pngCDel node.png
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel branch 10ru.pngCDel split2.pngCDel node 1.png or CDel branch 01rd.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
= CDel branch hh.pngCDel split2.pngCDel node h.png
Uniform tiling 63-t0.png Uniform tiling 63-t01.png Uniform tiling 63-t1.png
Uniform tiling 333-t01.png
Uniform tiling 63-t12.png
Uniform tiling 333-t012.png
Uniform tiling 63-t2.png
Uniform tiling 333-t2.png
Uniform tiling 63-t02.png
Rhombitrihexagonal tiling snub edge coloring.png
Uniform tiling 63-t012.png Uniform tiling 63-snub.png Uniform tiling 333-t0.pngUniform tiling 333-t1.png Uniform tiling 333-t02.pngUniform tiling 333-t12.png Uniform tiling 63-h12.png
Uniform tiling 333-snub.png
Uniform duals
V63 V3.122 V(3.6)2 V63 V36 V3.4.12.4 V.4.6.12 V34.6 V36 V(3.6)2 V36
CDel node f1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 6.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 6.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 6.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png CDel node fh.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 6.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Uniform tiling 63-t2.png Tiling Dual Semiregular V3-12-12 Triakis Triangular.svg Rhombic star tiling.png Uniform tiling 63-t2.png Uniform tiling 63-t0.png Tiling Dual Semiregular V3-4-6-4 Deltoidal Trihexagonal.svg Tiling Dual Semiregular V4-6-12 Bisected Hexagonal.svg Tiling Dual Semiregular V3-3-3-3-6 Floret Pentagonal.svg Uniform tiling 63-t0.png Rhombic star tiling.png Uniform tiling 63-t0.png

This tiling is topologically related as a part of sequence of cantellated polyhedra with vertex figure (3.4.n.4), and continues as tilings of the hyperbolic plane. These vertex-transitive figures have (*n32) reflectional symmetry.

Dimensional family of expanded polyhedra and tilings: 3.4.n.4
Symmetry
*n32
[n,3]
Spherical Euclidean Compact hyperbolic Paracompact
*232
[2,3]
D3h
*332
[3,3]
Td
*432
[4,3]
Oh
*532
[5,3]
Ih
*632
[6,3]
P6m
*732
[7,3]
 
*832
[8,3]...
 
*∞32
[∞,3]
 
Expanded
figure
Spherical triangular prism.png
3.4.2.4
Uniform tiling 332-t02.png
3.4.3.4
Uniform tiling 432-t02.png
3.4.4.4
Uniform tiling 532-t02.png
3.4.5.4
Uniform polyhedron-63-t02.png
3.4.6.4
Uniform tiling 73-t02.png
3.4.7.4
Uniform tiling 83-t02.png
3.4.8.4
H2 tiling 23i-5.png
3.4.∞.4
Coxeter
Schläfli
CDel node 1.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{2,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{3,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{4,3}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{5,3}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{6,3}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{7,3}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{8,3}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png
rr{∞,3}
Deltoidal figure Triangular dipyramid.png
V3.4.2.4
Rhombicdodecahedron.jpg
V3.4.3.4
Deltoidalicositetrahedron.jpg
V3.4.4.4
Deltoidalhexecontahedron.jpg
V3.4.5.4
Tiling Dual Semiregular V3-4-6-4 Deltoidal Trihexagonal.svg
V3.4.6.4
Deltoidal triheptagonal til.png
V3.4.7.4
Deltoidal trioctagonal til.png
V3.4.8.4
Deltoidal triapeirogonal til.png
V3.4.∞.4
Coxeter CDel node f1.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node f1.png

The hexagonal cupola contains the pattern of this tiling, but closes it into a degenerate polygon with a dodecagon base.

Family of convex cupolae
2 3 4 5 6
Triangular prism wedge.png
Digonal cupola
Triangular cupola.png
Triangular cupola
Square cupola.png
Square cupola
Pentagonal cupola.png
Pentagonal cupola
Hexagonal cupola flat.png
Hexagonal cupola
(Flat)

Circle packing[edit]

The Rhombitrihexagonal tiling can be used as a circle packing, placing equal diameter circles at the center of every point. Every circle is in contact with 4 other circles in the packing (kissing number). The gap inside each hexagon allows for one circle, for a denser packing with kissing number 5.

Rhombitrihexagonal tiling circle packing.png Rhombitrihexagonal tiling circle packing2.png

Deltoidal trihexagonal tiling[edit]

Deltoidal trihexagonal tiling
Tiling Dual Semiregular V3-4-6-4 Deltoidal Trihexagonal.svg
Type Dual semiregular tiling
Coxeter diagram CDel node f1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node f1.png
Faces kite
Face configuration V3.4.6.4
Symmetry group p6m, [6,3], (*632)
Rotation group p6, [6,3]+, (632)
Dual Rhombitrihexagonal tiling
Properties face-transitive

The deltoidal trihexagonal tiling is a dual of the semiregular tiling known as the rhombitrihexagonal tiling. Conway calls it a tetrille.[2] The edges of this tiling can be formed by the intersection overlay of the regular triangular tiling and a hexagonal tiling. Each kite face of this tiling has angles 120°, 90°, 60° and 90°. It is one of only eight tilings of the plane in which every edge lies on a line of symmetry of the tiling.[3]

The deltoidal trihexagonal tiling is a dual of the semiregular tiling rhombitrihexagonal tiling.[4] Its faces are deltoids or kites.

P5 dual.png

Related polyhedra and tilings[edit]

This tiling has face transitive variations, that can distort the kites into bilateral trapezoids or more general quadrillaterals. Ignoring the face colors below, the fully symmetry is p6m, and the lower symmetry is p31m with 3 mirrors meeting at a point, and 3-fold rotation points.[5]

Isohedral variations
Symmetry p6m, [6,3], (*632) p31m, [6,3+], (3*3)
Form Isohedral tiling p4-41.png Isohedral tiling p4-40b.png Isohedral tiling p4-40.png
Faces Kite Half regular hexagon Quadrilaterals

This tiling is related to the trihexagonal tiling by dividing the triangles and hexagons into central triangles and merging neighboring triangles into kites.

P3 hull.png

The deltoidal trihexagonal tiling is a part of a set of uniform dual tilings, corresponding to the dual of the rhombitrihexagonal tiling.

Other deltoidal (kite) tiling[edit]

Other deltoidal tilings are possible.

Point symmetry allows the plane to be filled by growing kites, with the topology as a square tiling, V4.4.4.4, and can be created by crossing string of a dream catcher. Below is an example with dihedral hexagonal symmetry.

Another face transitive tiling with kite faces, also a topological variation of a square tiling and with face configuration V4.4.4.4. It is also vertex transitive, with every vertex containing all orientations of the kite face.

Symmetry D6, [6], (*66) pmg, [∞,(2,∞)+], (22*) p6m, [6,3], (*632)
Tiling Inscribedstar.svg Isohedral tiling p4-53.png Tiling Dual Semiregular V3-4-6-4 Deltoidal Trihexagonal.svg
Configuration V4.4.4.4 V6.4.3.4

See also[edit]

Notes[edit]

  1. ^ Conway, 2008, p288 table
  2. ^ Conway, 2008, p288 table
  3. ^ Kirby, Matthew; Umble, Ronald (2011), "Edge tessellations and stamp folding puzzles", Mathematics Magazine 84 (4): 283–289, arXiv:0908.3257, doi:10.4169/math.mag.84.4.283, MR 2843659 .
  4. ^ Weisstein, Eric W., "Dual tessellation", MathWorld. (See comparative overlay of this tiling and its dual)
  5. ^ Tilings and Patterns

References[edit]