Riemann's differential equation

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In mathematics, Riemann's differential equation, named after Bernhard Riemann, is a generalization of the hypergeometric differential equation, allowing the regular singular points to occur anywhere on the Riemann sphere, rather than merely at 0, 1, and ∞. The equation is also known as the Papperitz equation.[1]

Definition[edit]

The differential equation is given by

\frac{d^2w}{dz^2} + \left[
\frac{1-\alpha-\alpha'}{z-a} +
\frac{1-\beta-\beta'}{z-b} +
\frac{1-\gamma-\gamma'}{z-c} \right] \frac{dw}{dz}
+\left[
\frac{\alpha\alpha' (a-b)(a-c)} {z-a}
+\frac{\beta\beta' (b-c)(b-a)} {z-b}
+\frac{\gamma\gamma' (c-a)(c-b)} {z-c}
\right]
\frac{w}{(z-a)(z-b)(z-c)}=0.

The regular singular points are a, b, and c. The pairs of exponents[clarification needed] for each are respectively α; α′, β; β′, and γ; γ′. The exponents are subject to the condition

\alpha+\alpha'+\beta+\beta'+\gamma+\gamma'=1.

Solutions[edit]

The solutions are denoted by the Riemann P-symbol (also known as the Papperitz symbol)

w(z)=P  \left\{ \begin{matrix} a & b & c & \; \\ 
\alpha & \beta & \gamma & z \\
\alpha' & \beta' & \gamma' & \;
\end{matrix} \right\}

The standard hypergeometric function may be expressed as

\;_2F_1(a,b;c;z) =
P  \left\{ \begin{matrix} 0 & \infty & 1 & \; \\ 
0 & a & 0 & z \\
1-c & b & c-a-b & \;
\end{matrix} \right\}

The P-functions obey a number of identities; one of them allows a general P-function to be expressed in terms of the hypergeometric function. It is

P  \left\{ \begin{matrix} a & b & c & \; \\ 
\alpha & \beta & \gamma & z \\
\alpha' & \beta' & \gamma' & \;
\end{matrix} \right\} = 
\left(\frac{z-a}{z-b}\right)^\alpha 
\left(\frac{z-c}{z-b}\right)^\gamma
P \left\{ \begin{matrix} 0 & \infty & 1 & \; \\ 
0 & \alpha+\beta+\gamma & 0 & \;\frac{(z-a)(c-b)}{(z-b)(c-a)} \\
\alpha'-\alpha & \alpha+\beta'+\gamma & \gamma'-\gamma & \;
\end{matrix} \right\}

In other words, one may write the solutions in terms of the hypergeometric function as

w(z)=
\left(\frac{z-a}{z-b}\right)^\alpha 
\left(\frac{z-c}{z-b}\right)^\gamma
\;_2F_1 \left(
\alpha+\beta +\gamma, 
\alpha+\beta'+\gamma; 
1+\alpha-\alpha';
\frac{(z-a)(c-b)}{(z-b)(c-a)} \right)

The full complement of Kummer's 24 solutions may be obtained in this way; see the article hypergeometric differential equation for a treatment of Kummer's solutions.

Fractional linear transformations[edit]

The P-function possesses a simple symmetry under the action of fractional linear transformations known as Möbius transformations (that are the conformal remappings of the Riemann sphere), or equivalently, under the action of the group GL(2, C). Given arbitrary complex numbers A, B, C, D such that ADBC ≠ 0, define the quantities

u=\frac{Az+B}{Cz+D} 
\quad \text{ and } \quad
\eta=\frac{Aa+B}{Ca+D}

and

\zeta=\frac{Ab+B}{Cb+D}
\quad \text{ and } \quad
\theta=\frac{Ac+B}{Cc+D}

then one has the simple relation

P  \left\{ \begin{matrix} a & b & c & \; \\ 
\alpha & \beta & \gamma & z \\
\alpha' & \beta' & \gamma' & \;
\end{matrix} \right\}
=P  \left\{ \begin{matrix} 
\eta & \zeta & \theta & \; \\ 
\alpha & \beta & \gamma & u \\
\alpha' & \beta' & \gamma' & \;
\end{matrix} \right\}

expressing the symmetry.

See also[edit]

Notes[edit]

  1. ^ Siklos, Stephen. "The Papperitz equation". Retrieved 21 April 2014. 

References[edit]