From Wikipedia, the free encyclopedia
Jump to: navigation, search
For use in record technology, see gramophone record.

In geomorphology, a rill is a natural fluvial topographic feature. Rills form as the initial signs of erosion as shallow waterways on an exposed slope.

Artificial rills are constructed as channels to carry a water supply from a water source some distance away. In landscape or garden design constructed rills are an aesthetic water feature.


A natural Fluvial Rill
flowing through a grassland in Holford Combe.

In fluvial geomorphology, a rill is a narrow and shallow incision into topsoil layers, resulting from erosion by overland flow or surface runoff. Rills are most common on slopes of unvegetated ground and agricultural land. However, they can occur on a variety of surfaces. Rills may even be found on the surface of certain soluble rocks like limestone.[1] Rills are often seen as the first signs of major soil erosion, and if left to grow, may evolve into larger fluvial features like gullies, streams, or rivers.

Formation of rills

Rills are created when water erodes the topsoil on hillsides, and so are significantly affected by seasonal weather patterns. They tend to appear more often in rainier months.[2] Rills begin to form when the runoff shear stress, the ability of surface runoff to detach soil particles, overcomes the soil’s shear strength, the ability of soil to resist force working parallel to the soil’s surface. This begins the erosion process as water breaks soil particles free and carries them down the slope.[3] These forces explain why sandy, loamy soils are especially susceptible to the formation of rills, whereas dense clays tend to resist rill formation.[4]

Rills cannot form on every surface, and their formation is intrinsically connected to the steepness of the hillside slope. Gravity determines the force of the water, which provides the power required to start the erosional environment necessary to create rills. Therefore, the formation of rills is primarily controlled by the slope of the hillside. Slope controls the depth of the rills, while the length of the slope and the soil’s permeability control the number of incisions in an area. Each type of soil has a threshold value, a slope angle below which water velocity cannot produce sufficient force to dislodge enough soil particles for rills to form.[5] For instance, on many non-cohesive slopes, this threshold value hovers around an angle of 2 degrees with a shear velocity between 3 and 3.5 cm/s.[6]

After rills begin forming, they are subjected to variety of other erosional forces which may increase their size and output volume. Up to 37% of erosion in a rill-ridden area may derive from mass movement, or collapse, of rill sidewalls. As water flows through a rill, it will undercut into the walls, triggering collapse. Also, as water seeps into the soil of the walls, they weaken, amplifying the chance of wall collapse. The erosion created by these forces increases the size of the rill while also swelling its output volume.[7]

Significance of rill erosion

Although rills are small, they transport significant amounts of soil each year. Some estimates claim rill flow has a carrying capacity of nearly ten times that of non-rill, or interrill, areas. In a moderate rainfall, rill flow can carry rock fragments up to 9 cm in diameter downslope. In 1987, scientist J. Poesen conducted an experiment on the Huldenberg field in Belgium which revealed that during a moderate rainfall, rill erosion removed as much as 200 kg (in submerged weight) of rock.[8]

Unfortunately, the considerable effect rills have on landscapes often negatively impact human activity. Rills have been observed washing away archaeological sites.[8] They are also very common in agricultural areas because sustained agriculture depletes the soil of much of its organic content, increasing the erodibility of the soil. Agricultural machines, such as tractors, compact the soil to the point where water flows over the surface rather than seeping into the soil. Tractor wheel impressions often channel water, providing a perfect environment for the generation of rills. If left alone, these rills may erode considerable amounts of arable soil.[9]

Under proper field management rills are small and are easily repaired by contour tilling the soil. This will prevent, for a time at least, the rills from growing and eroding the landscape more rapidly with time.[10]

Functional and aesthetic[edit]

A functional Rill, part of the Falaj water transportation system, at Al Ain Oasis, in the Abu Dhabi Emirate.

A constructed functional rill is a small canal; of stone, brick, concrete, or other lining material; usually rectilinear in cross section; for water transportation from a source such as a river-creek, spring, reservoir, qanat, or aqueduct; for domestic consumption or agricultural irrigation of crop land uses.

Rills were traditionally used in Middle Eastern and Mediterranean climate cultures of ancient and historical eras; and other climates and continents worldwide. They are distinguished from a 'water ditch' by being lined to reduce absorption losses and to increase durability. The Falaj irrigation system at the Al Ain Oasis, in present day Abu Dhabi Emirate, uses rills as part of its qanat water system. Sometimes in the Spanish language they are called Acequias.

Rills are also used for aesthetic purposes in landscape design. Rills are used as narrow channels of water inset into the pavement of a garden, as linear water features, and often tiled and part of a fountain design.

The historical origins are from paradise garden religious images that first translated into ancient Persian Gardens. Rills were later exceptionally developed in the Moorish (Spanish) Gardens of Al-andalus, such as at the Alhambra in Granada; and also in other Islamic gardens, cultures, and countries. Early 20th century examples are in the Maria Louisa Park gardens in Seville, Spain; and at the Casa del Herrero gardens in Montecito, California.

See also[edit]


  1. ^ Ford, D.C. & J. Lundberg. 1987. A Review of Dissolutional Rills in Limestone and Other Soluble Rocks. Bryan, R.B. (ed). Rill Erosion: Processes and Significance. Catena Supplement 8. W. Germany:Catena Verlag. 119-139
  2. ^ Fullen, M.A. & A.H. Reed. 1987. Rill Erosion on Arable Loamy Sands in the West Midlands of England. Bryan, R.B. (ed). Rill Erosion: Processes and Significance. Catena Supplement 8. W. Germany:Catena Verlag. 85-96.
  3. ^ Torri, D., M. Sfalanga & G. Chisci. 1987. Threshold Conditions for Incipient Rilling. Bryan, R.B. (ed). Rill Erosion: Processes and Significance. Catena Supplement 8. W. Germany:Catena Verlag. 97-105.
  4. ^ Loch, R.J. & E.C. Thomas. 1987. Resistance to Rill Erosion: Observations on the Efficiency of Rill Erosion on a Tilled Clay Soil Under Simulated Rain and Run-On Water. Bryan, R.B. (ed). Rill Erosion: Processes and Significance. Catena Supplement 8. W. Germany:Catena Verlag. 71-83.
  5. ^ Planchon, O., E. Fritcsh & C. Valentin. 1987. Rill Development in a Wet Savannah Environment. Bryan, R.B. (ed). Rill Erosion: Processes and Significance. Catena Supplement 8. W. Germany:Catena Verlag. 55-70.
  6. ^ Rauws, G. 1987. The Initiation of Rills on Plane Beds of Non-Cohesive Sediments. Catena Supplement 8. W. Germany:Catena Verlag. 107-118.
  7. ^ Govers, G. 1987. Spatial and Temporal Variability in Rill Development Processes at the Huldenberg Experimental Site. Catena Supplement 8. W. Germany:Catena Verlag. 17-33.
  8. ^ a b Poesen, J. 1987. Transport of Rock Fragments by Rill Flow—A Field Study. Catena Supplement 8. W. Germany:Catena Verlag. 35-54.
  9. ^ Fullen, M.A. & A.H. Reed. 1987. Rill Erosion of Arable Loamy Sands in the West Midlands of England. Catena Supplement 8. W. Germany:Catena Verlag. 85-96.
  10. ^