Ring circuit

From Wikipedia, the free encyclopedia
Jump to: navigation, search
This article is about a mains power configuration. For circuits where the components are connected in a ring, see ring modulation and phase-locked loop.
Diagram of a possible configuration of ring final circuit. Consumer unit (fuse box) is at bottom left.

In electricity supply, a ring final circuit or ring circuit (often incorrectly called a ring main or informally a ring) is an electrical wiring technique developed and primarily used in the United Kingdom. This design enables the use of smaller-diameter wire than would be used in a radial circuit of equivalent total current. Appliances connected to sockets on a ring circuit are individually protected by a fused plug.

Ideally, the ring circuit acts like two radial circuits proceeding in opposite directions around the ring, the dividing point between them dependent on the distribution of load in the ring. If the load is evenly split across the two directions, the current in each direction is half of the total, allowing the use of wire with half the current-carrying capacity. In practice, the load does not always split evenly, so thicker wire is used.

Description[edit]

The ring starts at the consumer unit (also known as fuse box, distribution board, or breaker box), visits each socket in turn, and then returns to the consumer unit. The ring is fed from a fuse or circuit breaker in the consumer unit.

Ring circuits are commonly used in British wiring with socket-outlets to BS 1363. They are generally wired with 2.5 mm2 cable and protected by a 32 A fuse, an older 30 A circuit breaker, or a European harmonised 32 A circuit breaker. Sometimes 4 mm2 cable is used if very long cable runs (to help reduce volt-drop) or derating factors such as thermal insulation are involved. 1.5 mm2 mineral-insulated copper-clad cable (known as pyro) may also be used (as mineral insulated cable can withstand heat more effectively than normal PVC) though more care must be taken with regard to voltage drop on longer runs. The protection devices for the fixed wiring need to be rated higher than would protect flexible appliance cords, so BS 1363 requires that all plugs and connection units incorporate fuses appropriate to the appliance cord.

History and use[edit]

The ring circuit and the associated BS 1363 plug and socket system were developed in Britain during 1942–1947.[1] They are commonly used in the United Kingdom and to a lesser extent in the Republic of Ireland. They are also found in the United Arab Emirates, Singapore, and Indonesia.

The ring circuit came about because Britain had to embark on a massive rebuilding programme following World War II.[2] There was an acute shortage of copper, and it was necessary to devise a scheme that used less copper than would normally be the case. The scheme was specified to use 13 A socket-outlets and fused plugs, several designs for the plugs and sockets appeared. The design chosen as the British Standard was the flat pin (BS 1363) system. Despite not conforming to the standard, the round pin Dorman & Smith system was still in use in many locations well into the 1980s, and is still occasionally seen today. This latter plug had the distinctive feature that the fuse was also the live pin and unscrewed from the plug body, often unintentionally leaving the live fuse projecting from the socket.

The ring circuit was devised during a time of copper shortage to allow two 3 kW heaters to be used in any two locations and to allow some power to small appliances, and to keep total copper use low. It has stayed the most common circuit configuration in the UK, although the 20 A radial (essentially breaking each ring in half and putting the halves on a separate breaker) is becoming more common. Splitting a ring into two 20 A radials can be a useful technique where one leg of the ring is damaged and cannot easily be replaced, but if the ring was wired with 1.5 mm² wires, when it is split it could support only a 13 A current.

Use in adapting existing circuits[edit]

Another advantage of ring circuits was an economy of cable and labour, as one could connect a cable between two existing 15 A radially wired sockets to make one 30 A ring, then adding as many sockets as were desired. This was an important consideration in the austerity of the 1940s. This would leave the ring supplied by two 15 A fuses, which worked well enough in practice, even if unconventional.

Many pre-war (round pin) installations used double pole fusing. When two 15 A radials were converted to a ring on these systems, the ring would then be supplied by no fewer than 4 fuses. Such circuits are rare today.

Installation rules[edit]

Rules for ring circuits say that the cable rating must be no less than two thirds of the rating of the protective device. This means that the risk of sustained overloading of the cable can be considered minimal. In practice, however, it is extremely uncommon to encounter a ring with a protective device other than a 30 A fuse, 30 A breaker, or 32 A breaker, and a cable size other than those mentioned above.

The IET Wiring Regulations (BS 7671) permit an unlimited number of socket outlets to be installed on a ring circuit, provided that the floor area served does not exceed 100 m2. In practice, most small and medium houses have one ring circuit per storey, with larger premises having more.

An installation designer may determine if additional circuits are required for areas of high demand. For example, it is common practice to put kitchens on their own ring circuit or sometimes a ring circuit shared with a utility room to avoid putting a heavy load at one point on the main downstairs ring circuit. Since any load on a ring is fed by the ring conductors on either side of it, it is desirable to avoid a concentrated load placed very near the feed, since the shorter conductors will have less impedance and carry a disproportionate share of the load.[citation needed]

Unfused spurs from a ring wired in the same cable as the ring are allowed to run one single or double socket from each of the sockets on the ring (the use of two singles was previously allowed but was disallowed because of their being converted to doubles) or one fused connection unit (FCU). Spurs may either start from a socket or be joined to the ring cable with a junction box or other approved method of joining cables. Triple and larger sockets are generally fused and therefore can also be placed on a spur.

It is not permitted to have more spurs than sockets on the ring, and it is considered bad practice by most electricians to have spurs in a new installation (some think they are bad practice in all cases).

Where loads other than BS 1363 sockets are connected to a ring circuit or it is desired to place more than one socket for low power equipment on a spur, a BS 1363 fused connection unit (FCU) is used. In the case of fixed appliances this will be a switched fused connection unit (SFCU) to provide a point of isolation for the appliance, but in other cases such as feeding multiple lighting points (putting lighting on a ring though is generally considered bad practice in new installation but is often done when adding lights to an existing property) or multiple sockets, an unswitched one is often preferable.

Fixed appliances with a power rating over 3 kW (for example, water heaters and some electric cookers) or with a non-trivial power demand for long periods (for example, immersion heaters) are no longer recommended to be connected to a ring circuit, but instead are connected to their own dedicated circuit. There are however plenty of older installations with such loads on a ring circuit.

Criticism[edit]

The final ring-circuit concept has been criticized in a number of ways, and some of these disadvantages could explain the lack of widespread adoption outside the United Kingdom. The pros and cons of ring circuits are measured against the other option: radials.

Fault conditions are not apparent when in use[edit]

Ring circuits continue to operate without the user being aware of any problem if there are fault conditions or installation errors that make the circuit unsafe:[3][4]

Fault condition Observations
  • Part of the ring missing or loose connections result in 2.5 mm2 cables running above rated current at times, resulting in reduced cable life.[5]
  • Radials with a loose connection will overheat severely and be an immediate fire risk.
  • Radials with a broken connection will not function (if L or N broken), or function with no safety earth connection (if E broken).
  • Accidental cross connection between two 32 A rings means that the fault current protection reaches 64 A and the required fault disconnection times are violated grossly.
  • Testing at installation addresses this.
  • Ring spur installations encourage using three connectors in one terminal, which can cause one to become loose and overheat.
  • The same situation occurs with both radial and ring circuits when branching off is used.
  • Rings encourage the installation of too many spurs on a ring, leading to a risk of overheating, especially if spur cables are too long without adequate fusing at the spur-point (i.e. a BS 5733 or similar fused spur is not used) - although this is almost certainly a breach of the appropriate electrical standards (e.g. BS 7671 in the UK).

 

Complexity of safety tests[edit]

Testing ring circuits may take 5–6 times longer than testing radial circuits.[4] The installation tests required for the safe operation of a ring circuit are substantially more time consuming than those for a radial circuit, and DIY installers or electricians qualified in other countries may not be familiar with them.

Balancing requirement[edit]

Regulation 433-02-04 of BS 7671 requires that the installed load is distributed around the ring such that no part of the cable exceeds its capacity. This requirement is difficult to fulfill and may be largely ignored in practice, as loads are often co-located (washing machine, tumble dryer, dish washer all next to kitchen sink) and not necessarily near the centre of the ring.[4]

Electromagnetic interference[edit]

Ring circuits can generate strong unwanted magnetic fields[citation needed]. In a radial circuit, the current flowing in the circuit must return through (almost exactly) the same path through which it came, especially if the live and neutral conductors are kept in close proximity of each other and form a twisted pair. This prevents the circuit forming a large magnetic coil (loop antenna), which would otherwise induce a magnetic field at the AC frequency (50 or 60 Hz).

In a ring circuit, on the other hand, it is possible, though unlikely, that the live and neutral currents are not equal on each side of the ring. Mains-frequency currents follow the path of least resistance, and it is possible, especially with ageing oxidised contacts, that from a socket, the lowest-resistance live connection is along the left-hand side of the ring, and the lowest-resistance neutral connection is along the right-hand side. As a result, current is flowing around the ring and will therefore induce a magnetic field.

Overcurrent protection[edit]

Ring circuits may not always be adequately protected against overcurrents, if, as is sometimes the case, there is an undetected fault, AND the circuit conductors are not sized to match the Overcurrent Protective Device (OPD) as a radial run as opposed to a ring. The purpose of ring circuits is to supply a large number of sockets; therefore, they are protected only with high-rated overcurrent circuit breakers (typically 32 A). In comparison, the radial circuits used in other countries typically supply only a small number of sockets and are therefore protected with lower-rated circuit breakers (typically 10–20 A). As a result, countries using ring circuits find it necessary to add additional lower-rated fuses into the plugs of each appliance. This does create a possible improvement in safety in that an appliance with blown plug fuse will not be live when plugged in again (unless the fuse is first replaced), whereas with fuseless plugs a faulty appliance remains potentially dangerous to plug in, though in most cases it would trip a lower-rated circuit breaker if plugged in again.

This incompatibility in the overcurrent protection of appliance leads between countries using ring and radial circuits has been a major stumbling block on the road to worldwide standardisation of domestic AC power plugs and sockets. Although plug fuses can, in principle, be better matched to the maximum current required by an appliance, in practice, some plugs in the UK are necessarily fitted with a fuse of the maximum permitted rating of 13 A, because a lower-rated device may well operate intermittently due to "surges" (e.g. fit a 3A BS1362 fuse in the plug of a fridge, and it will often blow). This is not a problem since all appliances are required to be safe with a 13 A fuse (and in any case, in other EU countries, the appliance concerned is often protected by a 16 A or 20 A OPD for the circuit concerned), but it does mean the potential safety advantage is only partially realised and that the fused plug offers little advantage over an unfused plug used on radial circuit with a 13 A or lower fuse, or B16 or lower circuit breaker. The introduction of regulations in the UK - the Plugs and Sockets (Safety) Regulations - requiring new appliances to be sold with correctly fused pre-fitted plugs improves this situation further.

One theoretical advantage of individually fused plugs is that a faulty appliance or flexible cord has a high likelihood of blowing only its plug fuse, leaving other appliances on the same ring circuit operating. However, with the introduction of EN60898 MCBs and the increased use of RCD protection for general purpose socket outlets in the UK (under BS7671: 2008 and earlier editions of the same standard) means that it is now more likely that the circuit protective device will operate before the plug fuse.

See also[edit]

References[edit]

  1. ^ Malcolm Mullins: The origin of the BS 1363 plug and socket outlet system. IEE Wiring Matters, Spring 2006.
  2. ^ D.W.M. Latimer: History of the 13 amp plug and the ring circuit. Presentation papers from a public meeting to discuss the issue of ring circuits, IET, London, October 2007 (PDF in ZIP)
  3. ^ Roger Lovegrove: EMC, April 2006
  4. ^ a b c Roger Lovegrove: Ring circuits – the disadvantages. Presentation papers from a public meeting to discuss the issue of ring circuits, IET, London, October 2007 (PDF in ZIP)
  5. ^ P Knowles: Ring main lining. EMC, February 2007