Risk-free interest rate

From Wikipedia, the free encyclopedia
  (Redirected from Risk free rate)
Jump to: navigation, search

Risk-free interest rate is the theoretical rate of return of an investment with no risk of financial loss. One interpretation is that the risk-free rate represents the interest that an investor would expect from an absolutely risk-free investment over a given period of time.[1] Another interpretation is that the risk free rate is the compensation that would be demanded by a representative investor holding a representative market portfolio, comprising all the assets in the economy, (i.e. the risk free rate is the compensation for systematic risk which cannot be eliminated by holding a diversified portfolio.) It is the second interpretation which is applied in the capital asset pricing model.[2]

Since the risk free rate can be obtained with no risk, it is implied that any additional risk taken by an investor should be rewarded with an interest rate higher than the risk-free rate.

In practice to work out the risk-free interest rate in a particular situation, a risk-free bond is usually chosen that is issued by a government or agency where the risks of default are so low as to be negligible.

Risk components[edit]

Risks that may be included are default risk, currency risk, and inflation risk.

Theoretical measurement[edit]

As stated by Malcolm Kemp in Chapter five of his book Market Consistency: Model Calibration in Imperfect Markets, the risk-free rate means different things to different people and there is no consensus on how to go about a direct measurement of it.

One interpretation of the theoretical risk-free rate is aligned to Fisher's concept of inflationary expectations, described in his treatise The Theory of Interest (1930), which is based on the theoretical costs and benefits of holding currency. In Fisher’s model, these are described by two potentially offsetting movements:

  1. Expected increases in the money supply should result in investors preferring current consumption to future income.
  2. Expected increases in productivity should result in investors preferring future income to current consumption.

The correct interpretation is that the risk-free rate could be either positive or negative and in practice the sign of the expected risk-free rate is an institutional convention – this is analogous to the argument that Tobin makes on page 17 of his book Money, Credit and Capital. In a system with endogenous money creation and where production decisions and outcomes are decentralized and potentially intractable to forecasting, this analysis provides support to the concept that the risk-free rate may not be directly observable.

However, it is commonly observed that for people applying this interpretation, the value of supplying currency is normally perceived as being positive. It is not clear what is the true basis for this perception, but it may be related to the practical necessity of some form of (credit?) currency to support the specialization of labour, the perceived benefits of which were detailed by Adam Smith in The Wealth of Nations. However, Smith did not provide an 'upper limit' to the desirable level of the specialization of labour and did not fully address issues of how this should be organised at the national or international level.

An alternative (less well developed) interpretation is that the risk-free rate represents the time preference of a representative worker for a representative basket of consumption. Again, there are reasons to believe that in this situation the risk-free rate may not be directly observable.

More recently a new paradigm for calculating the risk free rate has been discussed by a panel of volunteer experts working for the IngramSure Board, http://macro-economic-design.blogspot.co.uk/p/ingramsure-board.html. The new paradigm suggests that 'risk-free' should be considered in terms of preservation of wealth in terms of share of Average Earnings instead of spending power. This would imply that if an investor makes a saving of 10% of the Average Earnings in a risk free investment, when the investment is redeemed the investor will receive the same percentage of Average Earnings as was saved. Therefore if Average Earnings were £100 per week, and £10 has been saved, if Average Earnings were to rise to £110 per week, the 'risk free investment' would then be worth £11. Some of the implications of this idea are currently being examined in a paper which is expected to be submitted to Economic Thought in the first half of 2014. However, further work is required to examine how this new paradigm could influence the various bodies of financial theory which rely on the risk free rate as a key parameter in the modelling. (Listed at the bottom of this article.)

Given the theoretical 'fog' around this issue, in practice most industry practitioners rely on some form of proxy for the risk-free rate, or use other forms of benchmark rate which are presupposed to incorporate the risk-free rate plus some risk of default.[3] However, there are also issues with this approach, which are discussed in the next section.

Further discussions on the concept of a 'stochastic discount rate' are available in The Econometrics of Financial Markets by Campbell, Lo and MacKinley.

Proxies for the Risk-free Rate[edit]

The return on domestically held short-dated government bonds is normally perceived as a good proxy for the risk free rate. However, theoretically this is only correct if there is no perceived risk of default associated with the bond. Government bonds are conventionally considered to be relatively risk-free to a domestic holder of a government bond, because there is by definition no risk of default - the bond is a form of government obligation which is being discharged through the payment of another form of government obligation (i.e. the domestic currency).[4] Of course, default on government debt does happen, so if in theory this is impossible, then this points out a deficiency of the theory.

There is also the risk of the government 'printing more money' to meet the obligation, thus paying back in lesser valued currency. This may be perceived as a form of tax, rather than a form of default, a concept similar to that of 'seigniorage'. But the result to the investor is the same, loss of value according to his measurement, so focusing strictly on default does not include all risk.

The same consideration does not necessarily apply to a foreign holder of a government bond, since a foreign holder also requires compensation for potential foreign exchange movements in addition to the compensation required by a domestic holder. Since the risk free rate should theoretically exclude any risk, default or otherwise, this implies that the yields on foreign owned government debt cannot be used as the basis for calculating the risk free rate.

Since the required return on government bonds for domestic and foreign holders cannot be distinguished in an international market for government debt, this may mean that yields on government debt are not a good proxy for the risk free rate.

Another possibility used to estimate the risk free rate is the inter-bank lending rate. Again appears to be premised on the basis that these institutions benefit from an implicit guarantee, underpinned by the role of the monetary authorities as 'the lending of last resort.' (It should be appreciated that in a system with endogenous money supply the 'monetary authorities' may be private agents as well as the Central Bank - refer to Graziani 'The Theory of Monetary Production'.) Again, the same observation applies to banks as a proxy for the risk free rate - if there is any perceived risk of default implicit in the interbank lending rate, it is not appropriate to this rate as a proxy for the risk free rate.

Similar conclusions can be drawn from other potential benchmark rates, including short rated AAA rated corporate bonds of institutions deemed 'too big to fail.'

Unfortunately it has not been possible to locate a well detailed discussion on the basis of the various conventions for estimating the risk free rate through proxy rates, which appears to be a major 'hole' in the theoretical literature.

One solution that has been proposed for solving the issue of not having a good 'proxy' for the risk free asset, to provide an 'observable' risk free rate is to have some form of international guaranteed asset which would provide a guaranteed return over an indefinite time period (possibly even into perpetuity). There are some assets in existence which might replicate some of the hypothetical properties of this asset. For example, one potential candidate is the 'consul' bonds which were issued by the British government in the 18th century. https://en.wikipedia.org/wiki/Consol_(bond)

Application[edit]

The risk-free interest rate is highly significant in the context of the general application of modern portfolio theory which is based on the capital asset pricing model. There are numerous issues with this model, the most basic of which is the reduction of the description of utility of stock holding to the expected mean and variance of the returns of the portfolio. In reality, there may be other utility of stock holding, as described by Shiller in his article 'Stock Prices and Social Dynamics'.[5]

The risk free rate is also a required input in financial calculations, such as the Black–Scholes formula for pricing stock options and the Sharpe ratio. Note that some finance and economic theories assume that market participants can borrow at the risk free rate; in practice, of course, very few (if any) borrowers have access to finance at the risk free rate.

See also[edit]

References[edit]

  1. ^ "Risk-Free Rate of Return". Investopedia. Retrieved 7 September 2010. 
  2. ^ The Econometrics of Financial Markets, Campbell, Lo and MacKinlay
  3. ^ Malcolm Kemp, Market Consistency: Model Calibration in Imperfect Markets, chapter 5
  4. ^ Tobin, Money, Credit and Capital, page 16
  5. ^ Stock Prices and Social Dynamics, Brooking Papers on Economic Activity (1984), pages 457-511