Rodrigues' rotation formula

From Wikipedia, the free encyclopedia
Jump to: navigation, search
This article is about the Rodrigues' rotation formula, which is distinct from Euler–Rodrigues parameters and The Euler–Rodrigues formula for 3D rotation.

In the theory of three-dimensional rotation, Rodrigues' rotation formula (named after Olinde Rodrigues) is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix from an axis–angle representation. In other words, the Rodrigues formula provides an algorithm to compute the exponential map from so(3) to SO(3) without computing the full matrix exponent.

If v is a vector in ℝ3 and k is a unit vector describing an axis of rotation about which v rotates by an angle θ according to the right hand rule, the Rodrigues formula is


\mathbf{v}_\mathrm{rot} = \mathbf{v} \cos\theta + (\mathbf{k} \times \mathbf{v})\sin\theta
  + \mathbf{k} (\mathbf{k} \cdot \mathbf{v}) (1 - \cos\theta)~.

Derivation[edit]

Rodrigues' rotation formula rotates v by an angle θ around an axis z by decomposing it into its components parallel and perpendicular to z, and rotating only the perpendicular component.

Given a rotation axis represented by a unit vector \mathbf{k} and a vector \mathbf{v} that we wish to rotate about \mathbf{k} by the angle \theta,

 \mathbf{v}_{\parallel} = (\mathbf{k} \cdot \mathbf{v}) \mathbf{k}

is the component of \mathbf{v} parallel to \mathbf{k}, also called the vector projection of \mathbf{v} on \mathbf{k}, and

\mathbf{v}_{\perp} = \mathbf{v} - \mathbf{v}_{\parallel} = \mathbf{v} - (\mathbf{k} \cdot \mathbf{v}) \mathbf{k}

is the component of \mathbf{v} orthogonal to \mathbf{k}, also called the vector rejection of \mathbf{v} from \mathbf{k}.

Let

\mathbf{w} = \mathbf{k}\times\mathbf{v}.

The vectors \mathbf{v}_\perp and \mathbf{w} have the same length, but \mathbf{w} is perpendicular to both \mathbf{k} and \mathbf{v}_\perp. This can be shown via

\mathbf{w} = \mathbf{k} \times \mathbf{v} = \mathbf{k} \times (\mathbf{v}_{\parallel} + \mathbf{v}_{\perp}) = \mathbf{k} \times \mathbf{v}_{\parallel} + \mathbf{k} \times \mathbf{v}_{\perp} = \mathbf{k} \times \mathbf{v}_{\perp} ,

since \mathbf{k} has unit length, is parallel to \mathbf{v}_\parallel and is perpendicular to \mathbf{v}_\perp.

The vector \mathbf{w} can be viewed as a copy of \mathbf{v}_\perp rotated by 90° about \mathbf{k}. Using trigonometry, we can now rotate \mathbf{v}_\perp by \theta around \mathbf{k} to obtain \mathbf{v}_{\perp\ \mathrm{rot}}. Thus,


\begin{align}
  \mathbf{v}_{\perp\ \mathrm{rot}} &= \mathbf{v}_{\perp}\cos\theta + \mathbf{w}\sin\theta\\
                               &= (\mathbf{v} - (\mathbf{k} \cdot \mathbf{v}) \mathbf{k})\cos\theta
                                 + (\mathbf{k} \times \mathbf{v})\sin\theta.
\end{align}

\mathbf{v}_{\perp\ \mathrm{rot}} is also the rejection from \mathbf{k} of the vector \mathbf{v}_{\mathrm{rot}}, defined as the desired vector, \mathbf{v} rotated about \mathbf{k} by the angle \theta. Since v is not affected by a rotation about \mathbf{k}, the projection of \mathbf{v}_\mathrm{rot} on \mathbf{k} coincides with \mathbf{v}_\parallel. Thus,


\begin{align}
  \mathbf{v}_{\mathrm{rot}} &= \mathbf{v}_{\perp\ \mathrm{rot}} + \mathbf{v}_{\parallel\ \mathrm{rot}} \\
                            &= \mathbf{v}_{\perp\ \mathrm{rot}} + \mathbf{v}_{\parallel} \\
                            &= (\mathbf{v} - (\mathbf{k} \cdot \mathbf{v}) \mathbf{k}) \cos\theta
                               + (\mathbf{k} \times \mathbf{v})\sin\theta + (\mathbf{k} \cdot \mathbf{v}) \mathbf{k} \\
                            &= \mathbf{v} \cos\theta + (\mathbf{k} \times \mathbf{v})\sin\theta
                               + \mathbf{k} (\mathbf{k} \cdot \mathbf{v}) (1 - \cos\theta),
\end{align}

as required.

Matrix notation[edit]

We first represent v and k as column matrices, and defining a matrix K as the "cross-product matrix" for the vector k, i.e.,

\mathbf{K}=  
\left[\begin{array}{ccc}
0 & -k_3 & k_2 \\
k_3 & 0 & -k_1 \\
-k_2 & k_1 & 0
\end{array}\right]
.

This can easily be checked to have the property that

\mathbf{K}\mathbf{v} = \mathbf{k}\times\mathbf{v}

for any vector v (in fact, K is the unique matrix with this property).

Now, from the last equation in the previous sub-section, we may write


\begin{align}
  \mathbf{v}_{\mathrm{rot}} &= \mathbf{v} \cos\theta + (\mathbf{k} \times \mathbf{v})\sin\theta
                               + \mathbf{k} (\mathbf{k} \cdot \mathbf{v}) (1 - \cos\theta) \\
                                           &= \mathbf{v}  +  (\mathbf{K} \mathbf{v})\sin\theta
                               + (\mathbf{k} (\mathbf{k} \cdot \mathbf{v}) - \mathbf{v}) (1 - \cos\theta).
\end{align}

To simplify further, use the well-known formula for the vector triple product,

\mathbf{a}\times (\mathbf{b}\times \mathbf{c}) = \mathbf{b}(\mathbf{a}\cdot\mathbf{c}) - \mathbf{c}(\mathbf{a}\cdot\mathbf{b})

with a = b = k, and c = v, to obtain

(\mathbf{k} (\mathbf{k} \cdot \mathbf{v}) - \mathbf{v}) = \mathbf{k} \times (\mathbf{k} \times \mathbf{v})

or

\mathbf{k} (\mathbf{k} \cdot \mathbf{v}) - \mathbf{v} = \mathbf{K}^2 \mathbf{v}.

This means (substituting the above equation in the last one for vrot) ,

\mathbf{v}_{\mathrm{rot}} = \mathbf{v} + (\sin\theta) \mathbf{K}\mathbf{v} + (1-\cos\theta)\mathbf{K}^2\mathbf{v},

resulting in the Rodrigues' rotation formula in matrix notation,


\begin{align}
\mathbf{v}_{\mathrm{rot}} &= \mathbf{R}\mathbf{v} 
\end{align}

where R is the rotation matrix


\begin{align}
    \mathbf{R} = \mathbf{I} + (\sin\theta) \mathbf{K} + (1-\cos\theta)\mathbf{K}^2
\end{align}

Since K is defined in terms of the components of the rotation axis k, and θ is the rotation angle, R is the rotation matrix about k by angle θ, and is easy to compute.

R is a member of the rotation group SO(3) of ℝ3, and K is a member of the Lie algebra so(3) of that Lie group. In terms of the matrix exponential, we have

 \mathbf{R} = \mathbf{exp}(\theta\mathbf{K}).

For an alternative derivation based on this exponential relationship, see Axis–angle representation#Exponential map from so(3) to SO(3). For the inverse mapping, see Axis–angle representation#Log map from SO(3) to so(3).

See also[edit]

References[edit]

  • Don Koks, (2006) Explorations in Mathematical Physics, Springer Science+Business Media,LLC. ISBN 0-387-30943-8. Ch.4, pps 147 et seq. A Roundabout Route to Geometric Algebra'

External links[edit]