Rubble pile

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In astronomy, a rubble pile is an object that is not a monolith, consisting instead of numerous pieces of rock that have coalesced under the influence of gravity. Rubble piles have low density because there are large cavities between the various chunks that make them up. A close analogy to a rubble pile is a partially melted shot and wax slug projectile commonly fired from a shotgun as opposed to a monolithic pure lead slug, with the former having a lower density as it is loosely held together by wax and is composed of numerous individual lead bird shot spheres.

Rubble piles form when an asteroid or moon (which may originally be monolithic) is smashed to pieces by an impact, and the shattered pieces subsequently fall back together, primarily due to self-gravitation. This coalescing usually takes from several hours to weeks.[1]

Scientists first suspected that asteroids are often rubble piles when asteroid densities were first determined. Many of the calculated densities were significantly less than those of meteorites, which in some cases had been determined to be pieces of asteroids.

Many asteroids with low densities are believed to be rubble piles, for example 253 Mathilde. The mass of Mathilde, as determined by the NEAR Shoemaker mission, is far too low for the volume observed, considering the surface is rock. Even ice with a thin crust of rock would not provide a suitable density. Also, the large impact craters on Mathilde would have shattered a rigid body. However, the first unambiguous rubble pile to be photographed is 25143 Itokawa, which has no obvious impact craters and is thus almost certainly a coalescence of shattered fragments.

The asteroid 433 Eros, the primary destination of NEAR Shoemaker, was determined to be riven with cracks but otherwise solid. Other asteroids, possibly including Itokawa, have been found to be contact binaries, two major bodies touching, with or without rubble filling the boundary.

Notably, the moon Phobos the largest of the two natural satellites of the planet Mars, is also considered to be a rubble pile.

Large interior voids are possible because of the very low gravity of most asteroids. Despite a fine regolith on the outside (at least to the resolution that has been seen with spacecraft), the asteroid's gravity is so weak that friction between fragments dominates and prevents small pieces from falling inwards and filling up the voids.

All the largest asteroids (1 Ceres, 2 Pallas, 4 Vesta, 10 Hygiea, 704 Interamnia) are solid objects without any macroscopic internal porosity. This may be because they have been large enough to withstand all impacts, and have never been shattered. Alternatively, Ceres and some few other of the largest asteroids may be massive enough that, even if they were shattered but not dispersed, their gravity would collapse most voids upon recoalescing. Vesta, at least, has withstood intact one major impact since its formation and shows signs of internal structure from differentiation in the resultant crater that assure us it is not a rubble pile. This serves as evidence for size as a protection from shattering into rubble.

References[edit]

  1. ^ P. Michel et al. (2001). "Collisions and Gravitational Reaccumulation: Forming Asteroid Families and Satellites". Science 294 (5547): 1696. Bibcode:2001Sci...294.1696M. doi:10.1126/science.1065189. PMID 11721050. 

External links[edit]