Ruthenium tetroxide

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Ruthenium(VIII) oxide
Ruthenium tetroxide.svg
IUPAC name
Ruthenium(VIII) oxide
20427-56-9 YesY
PubChem 119079
Molar mass 165.07 g/mol
Appearance colorless liquid
Odor pungent
Density 3.29 g/cm3
Melting point 25.4 °C (77.7 °F; 298.5 K)
Boiling point 40.0 °C (104.0 °F; 313.1 K)
2% w/v at 20 °C
Solubility in other solvents Soluble in
Carbon tetrachloride
Molecular shape tetrahedral
Dipole moment zero
MSDS external MSDS sheet
NFPA 704
Flammability (red): no hazard code Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform Reactivity (yellow): no hazard code Special hazards (white): no codeNFPA 704 four-colored diamond
Related compounds
Related compounds
Except where noted otherwise, data is given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 YesY verify (what isYesY/N?)
Infobox references

Ruthenium tetroxide (Ruthenium(VIII) oxide) is the inorganic compound with the formula RuO4. It is a colourless liquid but samples are typically black due to impurities. As expected for a charge-neutral symmetrical oxide, it is quite volatile. The analogous OsO4 is more widely used and better known. One of the few solvents in which it forms stable solutions is CCl4.


RuO4 is prepared by oxidation of ruthenium(III) chloride with NaIO4.

8 Ru3+(aq) + 5 IO4(aq) + 12 H2O(l) → 8 RuO4(s) + 5 I(aq) + 24 H+(aq)

In typical reactions featuring RuO4 as the oxidant, many forms of ruthenium usefully serve as precursors to RuO4, such as oxide hydrates or hydrated chloride.


The molecule adopts tetrahedral. The Ru-O distances range from 169 to 170 pm.[1]

Properties, uses, related reagents[edit]

RuO4 is diamagnetic.

It oxidizes virtually any hydrocarbon. For example, it will oxidize adamantane to 1-adamantanol. It is used in organic synthesis to oxidize internal alkynes to 1,2-diketones, and terminal alkynes along with primary alcohols to carboxylic acids. When used in this fashion, the ruthenium(VIII) oxide is used in catalytic amounts and regenerated by the addition of sodium periodate to ruthenium(III) chloride and a solvent mixture of acetonitrile, water and carbon tetrachloride.

Because it is such an aggressive oxidant, reaction conditions are mild, generally room temperature. Although a strong oxidant, RuO4 oxidations do not perturb stereocenters that are not oxidized. Illustrative is the oxidation of the following diol to a carboxylic acid:


Oxidation of epoxy alcohols also occurs without degradation of the epoxide ring:


Under milder condition, oxidative reaction yields aldehydes instead. RuO4 readily converts secondary alcohols into ketones. Although similar results can be achieved with other cheaper oxidants such as PCC- or DMSO-based oxidants, RuO4 is ideal when a very vigorous oxidant is needed but mild conditions must be maintained.

RuO4 readily cleaves double bonds to yield carbonyl products, in a manner similar to ozonolysis. Osmium(VIII) oxide, a more familiar oxidant that is structurally similar to RuO4, does not cleave double bonds, instead producing vicinal diol products.

In terms of practical details, the substrate to be oxidized is typically dissolved in solvent such as CCl4, and acetonitrile is added as an aiding ligand to the catalytic cycle. Ether can then be added to precipitate and recover the ruthenium pre-catalyst.

Ruthenium tetroxide is used to expose latent fingerprints by turning to the brown/black ruthenium dioxide when in contact with fatty oils or fats contained in sebaceous contaminants of the print.[2]

Oxidative catalyst and mechanism[edit]

Although used as a direct oxidant, due to the relatively high cost of RuO4 it is also used catalytically with a cooxidant. For an oxidation of cyclic alcohols with RuO4 as a catalyst and bromate as a base, RuO4 is first activated by hydroxide:

RuO4 + OH → HRuO5

The reaction proceeds via a glycolate complex.

Related ruthenium compounds[edit]

Because RuO4 will readily decompose explosively at slightly elevated temperatures, most laboratories do not synthesize it directly, nor is it commercially available. Most laboratories instead use the anionic Ru(VII) derivative in the form of the salt of "TPAP" (tetrapropylammonium perruthenate), [N(C3H7)4]RuO4. TPAP is synthesized by oxidizing RuCl3 to RuO4 by NaBrO3 and isolated as the tetrapropylamine cation, which allows the salt to be used in organic solvents.


  1. ^ Pley, M.; Wickleder, M. S. (2005). "Two Crystalline Modifications of RuO4". Journal of Solid State Chemistry 178 (10): 3206–3209. doi:10.1016/j.jssc.2005.07.021. 
  2. ^ Mashiko, K.; Miyamoto, T. (1998). "Latent Fingerprint Processing by the Ruthenium Tetroxide Method". Journal of Forensic Identification 48 (3): 279–290. doi:10.3408/jasti.2.21. 

Further reading[edit]

  • Cotton, S.A. (1997). Chemistry of Precious Metals. London: Chapman and Hall. ISBN 978-0-7514-0413-5. 
  • Martín, V. S.; Palazón, J. M.; Rodríguez, C. M.; Nevill, C. R. (2006). "Ruthenium(VIII) Oxide". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rr009.pub2. ISBN 0471936235.  edit
  • Farmer, V.; Welton, T. (2002). "The oxidation of alcohols in substituted imidazolium ionic liquids using ruthenium catalysts". Green Chemistry 4 (2): 97. doi:10.1039/B109851A.  edit
  • Singh, B.; Srivastava, S. (1991). "Kinetics and mechanism of ruthenium tetroxide catalysed oxidation of cyclic alcohols by bromate in a base". Transition Metal Chemistry 16 (4): 466. doi:10.1007/BF01129466.  edit
  • Courtney, J.L.; Swansbor, K.F. (1972). "Ruthenium tetroxide oxidation". Reviews of Pure and Applied Chemistry 22: 47.