From Wikipedia, the free encyclopedia
Jump to: navigation, search
SCO1 cytochrome c oxidase assembly protein
Protein SCO1 PDB 1wp0.png
PDB rendering based on 1wp0.
Available structures
PDB Ortholog search: PDBe, RCSB
Symbols SCO1 ; SCOD1
External IDs OMIM603644 MGI106362 HomoloGene3374 GeneCards: SCO1 Gene
RNA expression pattern
PBB GE SCO1 gnf1h00058 at tn.png
More reference expression data
Species Human Mouse
Entrez 6341 52892
Ensembl ENSG00000133028 ENSMUSG00000069844
UniProt O75880 Q5SUC9
RefSeq (mRNA) NM_004589 NM_001040026
RefSeq (protein) NP_004580 NP_001035115
Location (UCSC) Chr 17:
10.58 – 10.6 Mb
Chr 11:
67.05 – 67.07 Mb
PubMed search [1] [2]

Protein SCO1 homolog, mitochondrial is a protein that in humans is encoded by the SCO1 gene.[1][2] Mutations in both SCO1 and SCO2 are associated with distinct clinical phenotypes as well as tissue-specific cytochrome c oxidase deficiency. SCO1 localizes predominantly to blood vessels, whereas SCO2 is barely detectable. Expression of SCO2 is also much higher than that of SCO1 in muscle tissue, while SCO1 is expressed at higher levels in liver tissue than SCO2.[3]


Mammalian cytochrome c oxidase (COX) catalyzes the transfer of reducing equivalents from cytochrome c to molecular oxygen and pumps protons across the inner mitochondrial membrane. In yeast, 2 related COX assembly genes, SCO1 and SCO2 (synthesis of cytochrome c oxidase), enable subunits 1 and 2 to be incorporated into the holoprotein. This gene is the human homolog to the yeast SCO1 gene.[2]

Clinical relevance[edit]

Mutation in the SCO1 gene are a cause of mitochondrial complex IV deficiency also known as cytochrome c oxidase deficiency. This disorder affects the mitochondrial respiratory chain resulting in a variety of symptoms, ranging from isolated myopathy to severe multisystem disease affecting several tissues and organs. A subset of patients also suffer from Leigh syndrome.[4][5]

Model organisms[edit]

Model organisms have been used in the study of SCO1 function. A conditional knockout mouse line, called Sco1tm1a(KOMP)Wtsi[9][10] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[11][12][13]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[7][14] Twenty two tests were carried out on mutant mice and two significant abnormalities were observed.[7] No homozygous mutant embryos were identified during gestation, and therefore none survived until weaning. The remaining tests were carried out on heterozygous mutant adult mice; no additional significant abnormalities were observed in these animals.[7]


  1. ^ Petruzzella V, Tiranti V, Fernandez P, Ianna P, Carrozzo R, Zeviani M (Feb 1999). "Identification and characterization of human cDNAs specific to BCS1, PET112, SCO1, COX15, and COX11, five genes involved in the formation and function of the mitochondrial respiratory chain". Genomics 54 (3): 494–504. doi:10.1006/geno.1998.5580. PMID 9878253. 
  2. ^ a b "Entrez Gene: SCO1 SCO cytochrome oxidase deficient homolog 1 (yeast)". 
  3. ^ Brosel S, Yang H, Tanji K, Bonilla E, Schon EA. (Nov 2010). "Unexpected vascular enrichment of SCO1 over SCO2 in mammalian tissues: implications for human mitochondrial disease.". Am J Pathol. 177 (5): 2541–8. doi:10.2353/ajpath.2010.100229. PMC 2966810. PMID 20864674. 
  4. ^ Leary SC, Cobine PA, Kaufman BA, Guercin GH, Mattman A, Palaty J, Lockitch G, Winge DR, Rustin P, Horvath R, Shoubridge EA (January 2007). "The human cytochrome c oxidase assembly factors SCO1 and SCO2 have regulatory roles in the maintenance of cellular copper homeostasis". Cell Metab. 5 (1): 9–20. doi:10.1016/j.cmet.2006.12.001. PMID 17189203. 
  5. ^ Valnot I, Osmond S, Gigarel N, Mehaye B, Amiel J, Cormier-Daire V, Munnich A, Bonnefont JP, Rustin P, Rötig A (November 2000). "Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy". Am. J. Hum. Genet. 67 (5): 1104–9. doi:10.1016/S0002-9297(07)62940-1. PMC 1288552. PMID 11013136. 
  6. ^ "Salmonella infection data for Sco1". Wellcome Trust Sanger Institute. 
  7. ^ a b c d Gerdin, AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. 
  8. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  9. ^ "International Knockout Mouse Consortium". 
  10. ^ "Mouse Genome Informatics". 
  11. ^ Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.  edit
  12. ^ Dolgin, Elie (2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718. 
  13. ^ International Mouse Knockout Consortium; Collins, FS; Rossant, J; Wurst, W (2007). "A Mouse for All Reasons". Cell 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. 
  14. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism.". Genome Biol 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353. 

Further reading[edit]