SPICA (spacecraft)

From Wikipedia, the free encyclopedia
Jump to: navigation, search
SPICA telescope
General information
Organization JAXA / NASA / ESA
Launch date 2022
Launch vehicle H-IIA
Mission length 3 years (design)
Location Lagrangian point L2
Wavelength 3.5 to 210 µm (infrared)
Diameter ~3.5 m (11 ft)
Instruments
SAFARI Far infrared spectrometer
MIR Coronagraph Mid IR Coronagraph
Mid IR Camera and Spectrometer Mid IR Camera and Spectrometer
Website JAXA, ESA

The Space Infrared Telescope for Cosmology and Astrophysics (SPICA), initially called HII/L2 after the launch vehicle and orbit, is a proposed infrared space telescope, successor of the successful AKARI spacecraft.

Background[edit]

The project is led by the Japan Aerospace Exploration Agency (JAXA), and the telescope will be launched on an H-IIA rocket. The Ritchey-Chrétien telescope's 3.5-metre mirror (similar size to that of the Herschel Space Observatory) is to be made of silicon carbide, possibly by the European Space Agency (ESA) given their experience with Herschel. Currently planned to be launched in 2022, the spacecraft's main mission will be the study of star and planetary formation. It will be able to detect stellar nurseries in galaxies, protoplanetary discs around young stars, and exoplanets, helped by its own coronograph for the latter two types of objects.

Project plan[edit]

It is intended to use a halo orbit around the L2 point; it is intended to use mechanical cryocoolers rather than liquid helium, allowing the mirror to be cooled to 4.5 K (versus the 80 K or so of a mirror cooled only by radiation like Herschel's) which provides substantially greater sensitivity in the 10–100 μm infrared band (IR band); the telescope is intended to observe in longer wavelength infrared than the James Webb Space Telescope.

Intended focal-plane instrumentation[edit]

  • SAFARI: 30–200 μm imaging spectrometer (to be provided by ESA)
  • Coronagraphic instrument for detecting Jupiter-scale exoplanets, working in the 5–20 μm range, also usable as an unobstructed imager.
  • High-resolution spectrograph for 4–40 μm
  • Low-resolution spectrograph for 10–100 μm

Timeline[edit]

The mission has been planned for many years; the launch date as of 2005 was "early 2010s", though as of 2009 a great deal of hardware has been designed but very little built, the SPICA website indicates that in summer 2009 the mission is still at the conference stage,[1] and the 2009 paper says 'within ten years'.[2] An internal review at ESA at the end of 2009 suggested that the technology readiness for the mission was not adequate [3] In 2010, it was expected to be launched in 2018.[4]

As of 2013, it is expected to be launched in 2022.[5]

Objectives[edit]

As in the name, the main objective is to make advancement in the research of cosmology and astrophysics. Specific research fields includes

  • The birth and evolution of galaxies
  • The birth and evolution of stars and planetary systems
  • The evolution of matter

Discovery science[edit]

  • Constraints on the emission of ground state Н2 emission from the first (population III) generation of stars
  • The detection of biomarkers in the mid-infrared spectra of exo-planets and/or the primordial material in protoplanetary disks
  • The detection of Н2 haloes around galaxies in the local Universe
  • With sufficient technical development of coronagraphic techniques: the imaging of any planets in thehabitable zone in the nearest few stars
  • The detection of the far infrared transitions of polycyclic aromatic hydrocarbons (PAHs) in the interstellar medium. The very large molecules thought to comprise the PAHs, and which give rise to the characteristic features in the near-infrared, have vibrational transitions in the far-infrared which are widespread and extremely weak
  • The direct detection of dust formation in super novae in external galaxies and the determination of the origin of the large amounts of dust in high redshift galaxies

References[edit]

  1. ^ "The Space Infrared Telescope for Cosmology & Astrophysics : Revealing the Origins of Planets and Galaxies". 
  2. ^ Goicoechea, J. R.; Isaak, K.; Swinyard, B. (2009). "Exoplanet research with SAFARI: A far-IR imaging spectrometer for SPICA". arXiv:0901.3240 [astro-ph.EP].
  3. ^ http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=46237
  4. ^ "SPICA's Mission". SPICA Website. JAXA. Retrieved January 11, 2011. [dead link]
  5. ^ "About SPICA". SPICA Website. JAXA. Retrieved May 1, 2013. 

External links[edit]