RIM-116 Rolling Airframe Missile

From Wikipedia, the free encyclopedia
  (Redirected from SeaRAM)
Jump to: navigation, search
For the earlier weapon named Ram, see Ram (rocket).
RIM-116 Rolling Airframe Missile
USS New Orleans (LPD-18) launches RIM-116 missile 2013.jpg
RAM launch from USS New Orleans (LPD-18), 2013
Type Close-in weapons system
Place of origin United States/Germany
Service history
In service 1992-present
Used by See operators
Production history
Designer General Dynamics (now Raytheon) / Diehl BGT Defence
Designed 1976
Manufacturer General Dynamics (now Raytheon) / Diehl BGT Defence
Unit cost US$998,000(FY2014)[1]
Produced 1985-present
Variants See variants
Specifications
Weight 5,777 kg (12,736 lb) (launcher)
73.5 kilograms (162 lb 1 oz) (missile)
Length 2.79 m (9 ft 2 in) (missile)
Warhead blast fragmentation warhead
Warhead weight 11.3 kg (24 lb 15 oz)

Wingspan 434 mm (17.1 in)
Propellant solid
Speed In excess of Mach 2
Guidance
system
three modes—passive radio frequency/infrared homing, infrared only, or infrared dual mode enabled (radio frequency and infrared homing)
Launch
platform
Mk 144 Guided Missile Launcher (GML) of the Mk 49 Guided Missile Launching System (GMLS)

The RIM-116 Rolling Airframe Missile (RAM) is a small, lightweight, infrared homing surface-to-air missile in use by the American, German, South Korean, Greek, Turkish, Saudi and Egyptian navies. It was intended originally and used primarily as a point-defense weapon against anti-ship cruise missiles. The missile is so-named because it rolls around its longitudinal axis to stabilize its flight path, much like a bullet fired from a rifled barrel. It is the only US Navy missile to operate in this manner.[2]

The Rolling Airframe Missiles, together with the Mk 49 Guided Missile Launching System (GMLS) and support equipment, comprise the RAM Mk 31 Guided Missile Weapon System (GMWS). The Mk-144 Guided Missile Launcher (GML) unit weighs 5,777 kilograms (12,736 lb) and stores 21 missiles. The original weapon cannot employ its own sensors prior to firing so it must be integrated with a ship's combat system, which directs the launcher at targets. On American ships it is integrated with the AN/SWY-2 Ship Defense Surface Missile System (SDSMS) and Ship Self Defense System (SSDS) Mk 1 or Mk 2 based combat systems. SeaRAM, a weapon system model equipped with independent sensors, is undergoing testing.

Development[edit]

The RIM-116 was developed by General Dynamics Pomona and Valley Systems divisions under a July 1976 agreement with Denmark and West Germany (the General Dynamics missile business was later acquired by Hughes Aircraft and is today part of Raytheon). Denmark dropped out of the program, but the USN joined in as the major partner. The Mk 49 launcher was evaluated on board the destroyer USS David R. Ray (DD-971) in the late 1980s.[2] The first 30 missiles were built in FY85 and they became operational on November 14, 1992, on board USS Peleliu (LHA-5).

Service[edit]

The RIM-116 is in service on several American and 30 German warships. All new German Navy warships will be equipped with the RAM, such as the new Braunschweig-class corvettes, which will mount two RAM launchers per ship. The Greek Navy has equipped the new Super Vita class fast attack craft with the RAM. South Korea has signed license-production contracts for their navy's KDX-II, KDX-III, and Dokdo-class amphibious assault ship.[3]


US Navy[edit]

The U.S. Navy plans to purchase a total of about 1,600 RAMs and 115 launchers to equip 74 ships. The missile is currently active aboard Gerald R. Ford-class aircraft carriers, Nimitz-class aircraft carriers, Wasp-class amphibious assault ships, Tarawa-class amphibious assault ships, San Antonio-class amphibious transport dock ships, Whidbey Island-class dock landing ship, Harpers Ferry-class dock landing ships, and littoral combat ships (LCS).[4] There are plans in place to equip Oliver Hazard Perry-class frigates with RAM launchers.[2]

Variants[edit]

Sailors handle the rolling airframe missile system aboard the Nimitz-class aircraft carrier USS Harry S. Truman (CVN-75).
The aircraft carrier USS Theodore Roosevelt (CVN-71) launches a Rolling Airframe Missile (RAM)

Block 0[edit]

Also known as RIM-116A in US service, the original version called Block 0 whose design is based on that of the AIM-9 Sidewinder air-to-air missile, from which it took its rocket motor, fuze, and warhead. Block 0 missiles initially home in on active radiation emitted from a target (such as the radar of an incoming anti-ship missile). Then, the terminal guidance is done by an infrared seeker derived from that of the FIM-92 Stinger missile. In test firings, the Block 0 missiles achieved hit rates of over 95%.

Block 1[edit]

The Block 1 (RIM-116B) is an enhanced version of the RAM missile that adds an overall infrared-only guidance system that enables it to intercept missiles that are not emitting any radar signals. The Block 0's radar homing capabilities have been retained.

Block 2[edit]

The RAM Block 2 is an upgraded version of the Rolling Airframe Missile (RAM) ship self-defense missile system. The RAM Block 2 missile upgrade aim is to more effectively counter the emerging threat of more maneuverable anti-ship missiles. The US Navy awarded Raytheon Missile Systems a $105 million Block 2 RAM development contract on May 8, 2007, with the missile development expected to complete by December 2010. LRIP began in 2012.[5] 51 missiles were initially ordered. On October 22, 2012, the RAM Block 2 completed its third guided test vehicle flight, firing two missiles in a salvo and directly hitting the target. This verified the command and control capabilities of the system, upgraded kinematic performance, guidance system, and airframe capabilities. Raytheon was scheduled to deliver 25 Block 2 missiles during the integrated testing phase of the program.[6][7] The Block 2 RAM was delivered to the U.S. Navy in late August 2014,[8] with 502 missiles to be acquired from 2015 to 2019.[9]

HAS Mode[edit]

In 1998, a memorandum of understanding was signed by the defense departments of Germany and the United States to improve the system, so that it could also engage so-called "HAS", Helicopter, Aircraft, and Surface targets. As developed, the HAS upgrade just required software modifications that can be applied to all Block 1 RAM missiles.

SeaRAM (weapon system)[edit]

SeaRAM

The SeaRAM combines the radar and electro-optical system[2] of the Phalanx CIWS Mk-15 Block 1B with an 11-cell RAM launcher to produce an autonomous system - one which does not need any external information to engage threats. Like the Phalanx, SeaRAM can be fitted to any class of ship. In 2008 a SeaRAM system was delivered to be installed on USS Independence (LCS-2).[10] As of December 2013, one SeaRAM is fitted to each Independence-class vessel.[11] In late 2014, the Navy revealed it had chosen to install the SeaRAM on its Small Surface Combatant LCS follow-on ships.[12]

General characteristics (Block 1)[edit]

Surface-to-air (SAM) missile being fired from USS Green Bay (LPD-20)
  • Primary Function: Surface-to-Air Missile
  • Contractor: Raytheon, Diehl BGT Defence
  • Length: 2.79 m (9 ft 2 in)
  • Diameter: 127 mm (5.0 in)
  • Fin span: 434 mm (1 ft 5.1 in)
  • Speed: Mach 2.0+
  • Warhead: 11.3 kg (24.9 lb) blast fragmentation
  • Launch Weight: 73.5 kg (162 lb)
  • Range: 9 km (5.6 mi)
  • Guidance System: three modes—passive radio frequency/infrared homing, infrared only, or infrared dual mode enabled (radio frequency and infrared homing)
  • Unit Cost: $998,000
  • Date Deployed: 1992

Operators[edit]

RAM Launcher on fast attack craft Ozelot of the German Navy.

References[edit]

Notes
  1. ^ "United States Department Of Defense Fiscal Year 2015 Budget Request Program Acquisition Cost By Weapon System" (pdf). Office Of The Under Secretary Of Defense (Comptroller)/ Chief Financial Officer. March 2014. p. 63. 
  2. ^ a b c d Norman Polmar (2005). Ships and Aircraft of the U.S. Fleet. The Naval Institute. p. 519. 
  3. ^ "PGM - Precision Guided Munitions". LigNex1.com. Retrieved 31 October 2014. 
  4. ^ [1]
  5. ^ "Raytheon's RAM Strikes Twice During Back-to-Back Tests." Raytheon, 39 January 2012.
  6. ^ RAM Block 2 Missile Successful in Double-fire Test - Deagel.com, October 22, 2012
  7. ^ "Rolling Airframe Missile Block 2 completes initial fleet firing". August 12, 2013. 
  8. ^ Raytheon delivers first Block 2 Rolling Airframe Missiles to US Navy - Raytheon news release, 27 August 2014
  9. ^ Navy to Accept New Rolling Airframe Missile - DoDBuzz.com, 19 May 2014
  10. ^ "Raytheon Company has delivered its SeaRAM anti-ship missile defense weapon system for installation aboard the littoral combat ship USS Independence (LCS-2)" (Press release). Raytheon. Retrieved 15 September 2010. 
  11. ^ "Littoral Combat Ship (LCS) High-Speed Surface Ship". www.naval-technology.com. Retrieved 14 December 2013. 
  12. ^ Hagel Approves Navy’s Proposal to Build More Lethal LCS Variant - Military.com, 11 December 2014
  13. ^ "SeaRAM, Close-In Weapon System - Japanese Example Ship". military-today.com. Retrieved 2013-08-13. 
Bibliography

External links[edit]