Second sound

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Second sound is a quantum mechanical phenomenon in which heat transfer occurs by wave-like motion, rather than by the more usual mechanism of diffusion. Heat takes the place of pressure in normal sound waves. This leads to a very high thermal conductivity. It is known as "second sound" because the wave motion of heat is similar to the propagation of sound in air.

Normal sound waves are fluctuations in the density of molecules in a substance; second sound waves are fluctuations in the density of phonons.[1] Second sound can be observed in any system in which most phonon-phonon collisions conserve momentum. This occurs in superfluids,[2] and also in some dielectric crystals[3][4][5] when Umklapp scattering is small. (Umklapp phonon-phonon scattering exchanges momentum with the crystal lattice, so phonon momentum is not conserved.)

Second sound in helium II[edit]

Second sound is observed in liquid helium at temperatures below the lambda point, 2.1768 K, where 4He becomes a superfluid known as helium II. Helium II has the highest thermal conductivity of any known material (several hundred times higher than copper).[6] Second sound can be observed either as pulses or in a resonant cavity.[7]

The speed of second sound is close to zero near the lambda point, increasing to approximately 20 m/s around 1.8 K,[8] about ten times slower than normal sound waves.[9] At temperatures below 1 K, the speed of second sound in helium II increases as the temperature decreases.[10]

Second sound is also observed in superfluid helium-3 below its lambda point 2.5 mK.[11]

Second sound in other media[edit]

Second sound has been observed in solid 4He and 3He,[12][13] and in some dielectric solids such as Bi in the temperature range of 1.2 to 4.0 K with a velocity of (0.78±0.05)×103 m/s,[14] or NaF around 10 to 20 K.[15]

Applications[edit]

Measuring the speed of second sound in 3He-4He mixtures can be used as a thermometer in the range 0.01-0.7 K.[16]

Oscillating Superleak Transducers (OST)[17] use second sound to locate defects in superconducting accelerator cavities.[18][19]

References[edit]

  1. ^ Smith, Henrik; Jensen, H. Hojgaard (1989). "Section 4.3: Second Sound". Transport Phenomena. Oxford University Press. ISBN 0-19-851985-0. 
  2. ^ Srinivasan, R (March 1999). "Second Sound: Waves of Entropy and Temperature". Resonance 3: 16–24. 
  3. ^ Srinivasan, R (June 1999). "Second Sound: The Role of Elastic Waves". Resonance 4: 15–19. doi:10.1007/bf02834631. 
  4. ^ Prohofsky, E.; Krumhansl, J. (1964). "Second-Sound Propagation in Dielectric Solids". Physical Review 133 (5A): A1403. Bibcode:1964PhRv..133.1403P. doi:10.1103/PhysRev.133.A1403.  edit
  5. ^ Chester, M. (1963). "Second Sound in Solids". Physical Review 131 (5): 2013. Bibcode:1963PhRv..131.2013C. doi:10.1103/PhysRev.131.2013.  edit
  6. ^ Lebrun, Phillipe (1997 July 17). Superfluid helium as a technical coolant (LHC-Project-Report-125). CERN. p. 4. http://cdsweb.cern.ch/record/330851/files/lhc-project-report-125.pdf.
  7. ^ Van Der Boog, A. G. M.; Husson, L. P. J.; Disatnik, Y.; Kramers, H. C. (1981). "Experimental results on the velocity of second sound and the viscosity in dilute 3He-4He mixtures". Physica B+C 104 (3): 303. doi:10.1016/0378-4363(81)90176-5.  edit
  8. ^ Wang, R. T.; Wagner, W. T.; Donnelly, R. J. (1987). "Precision second-sound velocity measurements in helium II". Journal of Low Temperature Physics 68 (5–6): 409–417. Bibcode:1987JLTP...68..409W. doi:10.1007/BF00682305.  edit
  9. ^ Lane, C.; Fairbank, H.; Fairbank, W. (1947). "Second Sound in Liquid Helium II". Physical Review 71 (9): 600. Bibcode:1947PhRv...71..600L. doi:10.1103/PhysRev.71.600.  edit
  10. ^ De Klerk, D.; Hudson, R.; Pellam, J. (1954). "Second Sound Propagation below 1°K". Physical Review 93: 28. Bibcode:1954PhRv...93...28D. doi:10.1103/PhysRev.93.28.  edit
  11. ^ Lu, S.; Kojima, H. (1985). "Observation of Second Sound in Superfluid ^{3}He-B". Physical Review Letters 55 (16): 1677–1680. Bibcode:1985PhRvL..55.1677L. doi:10.1103/PhysRevLett.55.1677. PMID 10031890.  edit
  12. ^ Ackerman, C.; Bertman, B.; Fairbank, H.; Guyer, R. (1966). "Second Sound in Solid Helium". Physical Review Letters 16 (18): 789. Bibcode:1966PhRvL..16..789A. doi:10.1103/PhysRevLett.16.789.  edit
  13. ^ Ackerman, C.; Overton, W. (1969). "Second Sound in Solid Helium-3". Physical Review Letters 22 (15): 764. Bibcode:1969PhRvL..22..764A. doi:10.1103/PhysRevLett.22.764.  edit
  14. ^ Narayanamurti, V.; Dynes, R. (1972). "Observation of Second Sound in Bismuth". Physical Review Letters 28 (22): 1461. Bibcode:1972PhRvL..28.1461N. doi:10.1103/PhysRevLett.28.1461.  edit
  15. ^ Jackson, H.; Walker, C.; McNelly, T. (1970). "Second Sound in NaF". Physical Review Letters 25: 26. Bibcode:1970PhRvL..25...26J. doi:10.1103/PhysRevLett.25.26.  edit
  16. ^ Pitre, L. (2003). "The Comparison between a Second-Sound Thermometer and a Melting-Curve Thermometer from 0.8 K Down to 20 mK". AIP Conference Proceedings 684. pp. 101–101. doi:10.1063/1.1627108.  edit
  17. ^ Sherlock, R. A. (1970). "Oscillating Superleak Second Sound Transducers". Review of Scientific Instruments 41 (11): 1603–1601. Bibcode:1970RScI...41.1603S. doi:10.1063/1.1684354.  edit
  18. ^ Hesla, Leah (21 April 2011). "The sound of accelerator cavities". ILC newsline. Retrieved 26 October 2012. 
  19. ^ Quadt, A.; Schröder, B.; Uhrmacher, M.; Weingarten, J.; Willenberg, B.; Vennekate, H. (2012). "Response of an oscillating superleak transducer to a pointlike heat source". Physical Review Special Topics - Accelerators and Beams 15 (3). arXiv:1111.5520. Bibcode:2012PhRvS..15c1001Q. doi:10.1103/PhysRevSTAB.15.031001.  edit

Bibliography[edit]

See also[edit]


This article incorporates information from the revision as of July 27, 2007 of the equivalent article on the German Wikipedia.