Silicon-controlled rectifier

From Wikipedia, the free encyclopedia
  (Redirected from Silicon controlled rectifier)
Jump to: navigation, search
SCR schematic symbol
A high power SCR

A silicon-controlled rectifier (or semiconductor-controlled rectifier) is a four-layer solid state current controlling device. The name "silicon controlled rectifier" is General Electric's trade name for a type of thyristor. The SCR was developed by a team of power engineers led by Gordon Hall[1] and commercialized by Frank W. "Bill" Gutzwiller in 1957.

Some sources define silicon controlled rectifiers and thyristors as synonymous,[2] other sources define silicon controlled rectifiers as a subset of a larger family of devices with at least four layers of alternating N and P-type material, this entire family being referred to as thyristors.[3][4] According to Bill Gutzwiller, the terms "SCR" and "Controlled Rectifier" were earlier, and "Thyristor" was applied later as usage of the device spread internationally.[5]

SCRs are unidirectional devices (i.e. can conduct current only in one direction) as opposed to TRIACs which are bidirectional (i.e. current can flow through them in either direction). SCRs can be triggered normally only by currents going into the gate as opposed to TRIACs which can be triggered normally by either a positive or a negative current applied to its gate electrode.

Construction[edit]

The Silicon Control Rectifier (SCR) consists of four layers of semiconductors, which form NPNP or PNP structures. It has three junctions, labeled J1, J2, and J3 and three terminals. The anode terminal of an SCR is connected to the P-Type material of a PNPN structure, and the cathode terminal is connected to the N-Type layer, while the gate of the Silicon Control Rectifier SCR is connected to the P-Type material nearest to the cathode.[6]

Modes of operation[edit]

There are three modes of operation for an SCR depending upon the biasing given to it:

  1. Forward blocking mode (off state)
  2. Forward conduction mode (on state)
  3. Reverse blocking mode (off state)

Forward blocking mode[edit]

In this mode of operation the anode is given a positive potential while the cathode is given a negative voltage keeping the gate at zero potential i.e. disconnected. In this case junction J1 and J3 are forward biased while J2 is reversed biased due to which only a small leakage current flows from the anode to the cathode until the applied voltage reaches its breakover value at which J2 undergoes avalanche breakdown and at this breakover voltage it starts conducting but below breakover voltage it offers very high resistance to the flow of current and is said to be in off state.

Forward conduction mode[edit]

SCR can be brought from blocking mode to conduction mode in two ways - either by increasing the voltage across anode to cathode beyond breakover voltage or by application of positive pulse at gate. Once it starts conducting no more gate voltage is required to maintain it in on state. There is one way to turn it off i.e. Reduce the current flowing through it below a minimum value called holding current.

Reverse blocking mode[edit]

SCR are available with reverse blocking capability. Reverse blocking capability adds to the forward voltage drop because of the need to have a long, low doped P1 region. (If one cannot determine which region is P1, a labeled diagram of layers and junctions can help). Usually, the reverse blocking voltage rating and forward blocking voltage rating are the same. The typical application for reverse blocking SCR is in current source inverters.

SCR incapable of blocking reverse voltage are known as asymmetrical SCR, abbreviated ASCR. They typically have a reverse breakdown rating in the 10's of volts. ASCR are used where either a reverse conducting diode is applied in parallel (for example, in voltage source inverters) or where reverse voltage would never occur (for example, in switching power supplies or DC traction choppers).

Asymmetrical SCR can be fabricated with a reverse conducting diode in the same package. These are known as RCT, for reverse conducting thyristor.

Thyristor turn on methods[edit]

  1. forward voltage triggering
  2. gate triggering
  3. dv/dt triggering
  4. temperature triggering
  5. light triggering

Forward voltage triggering occurs when the anode-cathode forward voltage is increased with the gate circuit opened. This is known as avalanche breakdown, during which junction J2 will breakdown. At sufficient voltages, the thyristor changes to its on state with low voltage drop and large forward current. In this case, J1 and J3 are already forward biased.

Application of SCRs[edit]

SCRs are mainly used in devices where the control of high power, possibly coupled with high voltage, is demanded. Their operation(it can switch large current on and off) makes them suitable for use in medium to high-voltage AC power control applications, such as lamp dimming, regulators and motor control.

SCRs and similar devices are used for rectification of high power AC in high-voltage direct current power transmission. They are also used in the control of welding machines, mainly MTAW (Metal Tungsten Arc Welding) and GTAW (Gas Tungsten Arc Welding) process.

Compared to SCSs[edit]

A silicon-controlled switch (SCS) behaves nearly the same way as an SCR, aside from a few distinctions. Unlike an SCR, a SCS switches off when a positive voltage/input current is applied to another anode gate lead. Unlike an SCR, a SCS can also be triggered into conduction when a negative voltage/output current is applied to that same lead.

SCSs are useful in practically all circuits that need a switch that turns on/off through two distinct control pulses. This includes power-switching circuits, logic circuits, lamp drivers, counters, etc.

Compared to Triacs[edit]

TRIACs resemble SCRs in that they both act as electrically controlled switches. Unlike SCRs, TRIACS can pass current in either direction. Thus, TRIACs are particularly useful for AC applications. TRIACs have three leads: a gate lead and two conducting leads, referred to as MT1 and MT2. If no current/voltage is applied to the gate lead, the TRIAC switches off. On the other hand, if the trigger voltage is applied to the gate lead, the TRIAC switches on.

TRIACs are suitable for light-dimming circuits, phase-control circuits, AC power-switching circuits, AC motor control circuits, etc.

See also[edit]

References[edit]

  1. ^ Ward, Jack. "The Early History of the Silicon Controlled Rectifier". p. 6. Retrieved 12 April 2014. 
  2. ^ Christiansen, Donald; Alexander, Charles K. (2005); Standard Handbook of Electrical Engineering (5th ed.). McGraw-Hill, ISBN 0-07-138421-9
  3. ^ International Electrotechnical Commission 60747-6 standard
  4. ^ Dorf, Richard C., editor (1997), Electrical Engineering Handbook (2nd ed.). CRC Press, IEEE Press, Ron Powers Publisher, ISBN 0-8493-8574-1
  5. ^ Ward, Jack. "The Early History of the Silicon Controlled Rectifier". p. 7. Retrieved 12 April 2014. 
  6. ^ http://www.daenotes.com/electronics/industrial-electronics/silicon-controlled-rectifiers-scr

Further reading[edit]

External links[edit]