Silver iodide

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Silver iodide
Jodid stříbrný.PNG
Silver iodide
Identifiers
CAS number 7783-96-2 YesY
PubChem 6432717
ChemSpider 22969 YesY
UNII 81M6Z3D1XE YesY
EC number 232-038-0
Jmol-3D images Image 1
Properties
Molecular formula AgI
Molar mass 234.77 g/mol
Appearance yellow, crystalline solid
Odor odorless
Density 5.675 g/cm3, solid
Melting point 558 °C (1,036 °F; 831 K)
Boiling point 1,506 °C (2,743 °F; 1,779 K)
Solubility in water 3×10−7g/100mL (20 °C)
Solubility product, Ksp 8.52 × 10 −17
Solubility soluble in acid
Structure
Crystal structure hexagonal (β-phase, < 147 °C)
cubic (α-phase, > 147 °C)
Thermochemistry
Std molar
entropy
So298
115 J·mol−1·K−1[1]
Std enthalpy of
formation
ΔfHo298
−62 kJ·mol−1[1]
Hazards
MSDS Sigma-Aldrich
EU classification not listed
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
Flash point Non-flammable
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 YesY (verify) (what is: YesY/N?)
Infobox references

Silver iodide is an inorganic compound with the formula AgI. The compound is a bright yellow solid, but samples almost always contain impurities of metallic silver that give a gray coloration. The silver contamination arises because AgI is highly photosensitive. This property is exploited in silver-based photography. Silver iodide is also used as an antiseptic and in cloud seeding.

Structure[edit]

The structure (or phase) adopted by silver iodide depends on the temperature of the solid:[2]

  • Up to 420 K (147 °C), AgI is more stable in the β-phase, which has a wurtzite structure. It is known as the mineral iodargyrite. In this motif, the silver and iodide centers are tetrahedrally coordinated.
  • Above 420 K (147 °C), the α-phase becomes more stable. This motif is a body-centered cubic structure which has the silver centers distributed randomly between 2-, 3-, and 4-coordinate sites. Above 420 K, Ag+ ions can move rapidly through the solid, making it a fast ion conductor. The transition between the β and α forms represents the melting of the silver (cation) sublattice. The entropy of fusion (melting) for α-AgI is approximately half that for sodium chloride (a typical ionic solid). This can be rationalized by noting that the AgI crystalline lattice has essentially already partly melted in the transition between α and β forms.
  • A metastable γ-phase also exists below 420 K, which has a zinc blende structure.
The golden-yellow crystals on this mineral sample are iodargyrite, a naturally occurring form of β-AgI.

Preparation and properties[edit]

Silver iodide is prepared by reaction of an iodide solution (e.g., potassium iodide) with a solution of silver ions (e.g., silver nitrate). A yellowish solid quickly precipitates. The solid is a mixture of the two principal phases. Dissolution of the AgI in hydroiodic acid, followed by dilution with water precipitates β-AgI. Alternatively, dissolution of AgI in a solution of concentrated silver nitrate followed by dilution affords α-AgI.[3] If the preparation is not conducted in the absence of sunlight, the solid darkens rapidly, the light causing the reduction of ionic silver to metallic. The photosensitivity varies with sample purity.

Cloud seeding[edit]

Cessna 210 equipped with a silver iodide generator for cloud seeding

The crystalline structure of β-AgI is similar to that of ice, allowing it to induce freezing by the process known as heterogeneous nucleation. Approximately 50,000 kg are used for cloud seeding annually, each seeding experiment consuming 10–50 grams.[4]

Safety[edit]

Extreme exposure can lead to argyria characterized by localized discoloration of body tissue.

References[edit]

  1. ^ a b Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A23. ISBN 0-618-94690-X. 
  2. ^ Binner, J. G. P.; Dimitrakis, G.; Price, D. M.; Reading, M.; Vaidhyanathan, B. (2006). "Hysteresis in the β–α Phase Transition in Silver Iodide" (PDF). Journal of Thermal Analysis and Calorimetry 84 (2): 409–412. doi:10.1007/s10973-005-7154-1. 
  3. ^ O. Glemser, H. Saur "Silver Iodide" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 1036-7.
  4. ^ Phyllis A. Lyday "Iodine and Iodine Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005. doi:10.1002/14356007.a14_381
HI He
LiI BeI2 BI3 CI4 NI3 I2O4,
I2O5,
I4O9
IF,
IF3,
IF5,
IF7
Ne
NaI MgI2 AlI3 SiI4 PI3,
P2I4
S ICl,
ICl3
Ar
KI CaI2 Sc TiI4 VI3 CrI3 MnI2 FeI2 CoI2 NiI2 CuI ZnI2 Ga2I6 GeI2,
GeI4
AsI3 Se IBr Kr
RbI SrI2 Y ZrI4 Nb Mo Tc Ru Rh Pd AgI CdI2 InI3 SnI4,
SnI2
SbI3 TeI4 I Xe
CsI BaI2   Hf Ta W Re Os Ir Pt AuI Hg2I2,
HgI2
TlI PbI2 BiI3 Po AtI Rn
Fr Ra   Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
La Ce Pr Nd Pm SmI2 Eu Gd TbI3 Dy Ho Er Tm Yb Lu
Ac ThI4 Pa UI3,
UI4
Np Pu Am Cm Bk Cf Es Fm Md No Lr