Skull fracture

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Skull fracture
Classification and external resources
Depressed skull fracture.jpg
A piece of a skull with a depressed skull fracture
ICD-10 S02
ICD-9 800.0-804.9
MedlinePlus 000060
MeSH D012887
Mind map showing a summary of skull fractures.

A skull fracture is a break in one or more of the eight bones that form the cranial portion of the skull, usually occurring as a result of blunt force trauma. If the force of the impact is excessive, the bone may fracture at or near the site of the impact and cause damage to the underlying physical structures contained within the skull such as the membranes, blood vessels, and brain, even in the absence of a fracture.

While an uncomplicated skull fracture can occur without associated physical or neurological damage and is in itself usually not clinically significant, a fracture in healthy bone indicates that a substantial amount of force has been applied and increases the possibility of associated injury. Any significant blow to the head results in a concussion, with or without loss of consciousness.

A fracture which occurs in conjunction with an overlying laceration which tears the epidermis and the meninges or runs through the paranasal sinuses and the middle ear structures, resulting in the outside environment being in contact with the cranial cavity is termed a compound fracture. Compound fractures may either be clean or contaminated.

There are four major types of skull fractures; linear fractures which are the most common and usually require no intervention for the fracture itself, depressed fractures which are usually comminuted with broken portions of bone displaced inward may require surgical intervention if there is underlying tissue damage, diastatic fractures in which the sutures of the skull widen usually affects children under three, and basilar fractures which occur in the bones at the base of the skull.

Neurocranium[edit]

Lateral view of the human skull with the neurocranium highlighted.
The three bone layers of the skull.

The human skull is anatomically divided into two parts: the neurocranium formed by eight cranial bones which houses and protects the brain, and the facial skeleton (viscerocranium) composed of fourteen bones not including the three ossicles of the inner ear.[1] The term "skull fracture" is typically used to describe fractures to the neurocranium while fractures of the facial portion of the skull are classified as "facial fractures, or if the jaw is fractured, a "mandibular fracture".[2]

The eight cranial bones are separated by sutures : one frontal bone, two parietal bones, two temporal bones, one occipital bone, one sphenoid bone, and one ethmoid bone.[3]

There are three layers in the bones of the skull: the hard compact layer of the external table (lamina externa), the diploë which is a spongy layer in the middle containing red bone marrow and the compact layer of the inner table (Lamina interna).[4]

Skull thickness is variable depending upon location thus the traumatic impact required to cause a fracture depends on the site of the impact. The skull is thick at the glabella, the external occipital protuberance, the mastoid processes, and the external angular process. Where the skull is covered with muscle, there is no underlying diploë formation between the internal and external lamina which results in a thin area of bone more susceptible to fractures.

Skull fractures occur more easily at the thin squamous temporal and parietal bones, the sphenoid sinus, the foramen magnum (the opening at the base of the skull through which the spinal cord passes), the petrous temporal ridge, and the inner portions of the sphenoid wings at the base of the skull. The middle cranial fossa, a depression at the base of the cranial cavity forms the thinnest part of the skull and is thus the weakest part. This area of the cranial floor is weakened further by the presence of multiple foramina as a result this section is at higher risk for basilar skull fractures to occur. Other areas more susceptible to fractures are the cribriform plate, the roof of orbits in the anterior cranial fossa, and the areas between the mastoid and dural sinuses in the posterior cranial fossa.[5]

Linear fracture[edit]

Linear skull fractures are breaks in the bone that transverse the full thickness of the skull from the outer to inner table, are usually fairly straight and involve no displacement of the bone. The common method of injury is blunt force trauma in which the energy from the blow is transferred over a wide surface area of the skull.

Linear fractures of the skull are usually of little clinical significance unless they parallel in close proximity or transverse a suture, or they involve a venous sinus groove or vascular channel. The resulting complications may include suture diastasis, venous sinus thrombosis, and epidural hematoma. In young children, although rare, the possibility exists of developing a growing skull fracture especially if the fracture occurs in the parietal bone.[6]

Depressed skull fracture[edit]

Depressed skull fracture.

A depressed skull fracture is a type of fracture usually resulting from blunt force trauma, such as getting struck with a hammer, rock or getting kicked in the head. These types of fractures, which occur in 11% of severe head injuries, are comminuted fractures in which broken bones are displaced inward. Depressed skull fractures carry a high risk of increased pressure on the brain, or a hemorrhage to the brain, crushing the delicate tissue.

Compound depressed skull fractures occur when there is a laceration over the fracture, resulting in the internal cranial cavity being in contact with the outside environment increasing the risk of contamination and infection. Complex depressed fractures are those in which the dura mater is torn. Depressed skull fractures may require surgery to lift the bones off the brain if they are placing pressure on it.[7]

Diastatic skull fracture[edit]

cranial abnormalities in cleidocranial dysplasia including diastatic sutures.

Diastatic fractures occur when the fracture line transverses one or more sutures of the skull causing a widening of the suture. While this type of fracture is usually seen in infants and young children as the sutures are not yet fused it can also occur in adults. When a diastatic fracture occurs in adults it usually affects the lambdoidal suture as this suture does not fully fuse in adults until about the age of 60.

Diastatic fractures can occur with different types of fractures and it is also possible for diastasis of the cranial sutures to occur without a concomitant fracture. Sutural diastasis may also occur in various congenital disorders such as cleidocranial dysplasia and osteogenesis imperfecta.[8][9][10][11]

Basilar skull fracture[edit]

Superior view of the skull base.

Basilar skull fractures are linear fractures that occur in the floor of the cranial vault (skull base), which require more force to cause than other areas of the neurocranium. Thus they are rare, occurring as the only fracture in only 4% of severe head injury patients.

Basilar fractures have characteristic signs: blood in the sinuses; a clear fluid called cerebrospinal fluid (CSF) leaking from the nose (rhinorrhea) or ears (otorrhea); periorbital ecchymosis often called 'raccoon eyes'[12] (bruising of the orbits of the eyes that result from blood collecting there as it leaks from the fracture site); and retroauricular ecchymosis known as "Battle's sign" (bruising over the mastoid process).[13]

Growing skull fracture[edit]

A growing skull fracture (GSF) also known as a craniocerebral erosion or leptomeningeal cyst[14] due to the usual development of a cystic mass filled with cerebrospinal fluid is a rare complication of head injury usually associated with linear skull fractures of the parietal bone in children under 3. It has been reported in older children in atypical regions of the skull such as the basiooccipital and the base of the skull base and in association with other types of skull fractures. It is characterized by a diastatic enlargement of the fracture.

There are various factors associated with the development of a GSF with the primary causitive factor being a tear in the dura mater. The skull fracture enlarges due in part to the rapid physiologic growth of the brain which occurs in young children and brain cerebrospinal fluid (CSF) pulsations in the underlying leptomenigeal cystic mass.[15][16][17][18][19][20][21]

Cranial burst skull fracture[edit]

A cranial burst skull fracture usually occurring with severe injuries in infants less than 1 year of age is a closed, diastatic skull fracture with cerebral extrusion beyond the outer table of the skull under the intact scalp.

Acute scalp swelling is associated with this type of fracture. In equivocal cases without immediate scalp swelling the diagnosis may be made via the use of magnetic resonance imaging thus insuring more prompt treatment and avoiding the development of a "growing skull fracture".[22]

Compound skull fracture[edit]

Compound skull fractures occur when all layers protecting the brain have been breached from the epidermis to the meninges allowing outside environmental contact with the skull cavity

A fracture which occurs in conjunction with an overlying laceration which tears the epidermis and the meninges or runs through the paranasal sinuses and the middle ear structures, resulting in the outside environment being in contact with the cranial cavity is termed a compound fracture.

Compound fractures may either be clean or contaminated. Intracranial air (pneumocephalus) may occur in compound skull fractures.[23]

The most serious complication of compound skull fractures is infection. Increased risk factors for infection include visible contamination, meningeal tear, loose bone fragments and presenting for treatment more than eight hours after initial injury.[24]

Compound elevated skull fracture[edit]

A compound elevated skull fracture is a rare type of skull fracture where the fractured bone is elevated above the intact outer table of the skull. This type of skull fracture is always compound in nature. It may be caused during an assault with a weapon in which the initial blow penetrates the skull and the underlying meninges and upon retrieval of the weapon lifts the fractured portion of the skull outward. It may also be caused by a rotation of the skull while being struck in a case of blunt force trauma, a rotation of the skull while striking an inanimate object as in a fall or it may occur during transfer of a patient after the initial compound head injury.[25][26]

Neurological deficits in skull fractures[edit]

The presence of a concussion or skull fracture in trauma patients without intracranial hemorrhage or focal neurologic deficits was indicated in long term cognitive impairments and emotional lability at nearly double the rate as those patients without either complication.[27]

In a study of emergency room patients suspected of having suffered closed head injuries, neuropsychological testing and computerized tomography (CT) scans came back with normal results. The patients did not differ in Closed head injury (CHI) scores as measured by the Glasgow Coma Scale (GCS).

Those with a skull fracture were shown to have "neuropsychological dysfunction, even in the absence of intracranial pathology or more severe disturbance of consciousness on the GCS".[28]

See also[edit]

References[edit]

  1. ^ Anne M. Gilroy: : Atlas of Anatomy. P.454; Thime Medical Publishers Inc. (2008) ISBN 1-60406-151-0
  2. ^ Olson RA, Fonseca RJ, Zeitler DL, et al. Fractures of the mandible: a review of 580 cases. J Oral Maxillofac Surg. 1982 Jan;40(1):23-8. PMID 6950035
  3. ^ Leon Schlossberg, George D. Zuidema, Johns: The Johns Hopkins Atlas of Human Functional Anatomy, p.5; The Johns Hopkins University Press; (1997) ISBN 0-8018-5652-3
  4. ^ Johannes Lang: Skull base and related structures: atlas of clinical anatomy. P.208. F.K.Schattauer,Germany;(July 1999) ISBN 3-7945-1947-7
  5. ^ Medscape: Ali Nawaz Khan: Imaging in Skull Fractures [1]
  6. ^ Haar FL. Complication of linear skull fracture in young children. Am J Dis Child. 1975 Oct;129(10):1197-200. PMID 1190143
  7. ^ Singh J and Stock A. 2006. "Head Trauma." Emedicine.com. Retrieved on January 26, 2007.
  8. ^ Paterson CR, Burns J, McAllion SJ. Am J Med Genet. 1993 Jan 15;45(2):187-92.Osteogenesis imperfecta: the distinction from child abuse and the recognition of a variant form. PMID 8456801
  9. ^ Kanda M, Kabe S, Kanki T, Sato J, Hasegawa Y. Cleidocranial dysplasia: a case report No Shinkei Geka. 1997 Dec;25(12):1109-13. PMID 9430147
  10. ^ Sabini RC, Elkowitz DE. J Am Osteopath Assoc. 2006 Oct;106(10):600-4. Significance of differences in patency among cranial sutures.PMID 17122029
  11. ^ Pirouzmand F, Muhajarine N. Craniofac Surg. 2008 Jan;19(1):27-36. Definition of topographic organization of skull profile in normal population and its implications on the role of sutures in skull morphology. PMID 18216661
  12. ^ Herbella FA, Mudo M, Delmonti C. et al. Injury. 2001 Dec;32(10):745-7. 'Raccoon eyes' (periorbital haematoma) as a sign of skull base fracture. PMID 11754879
  13. ^ Tubbs RS, Shoja MM, Loukas M, wt al. William Henry Battle and Battle's sign: mastoid ecchymosis as an indicator of basilar skull fracture. J Neurosurg. 2010 Jan;112(1):186-8. PMID 19392601
  14. ^ Irabor PF, Akhigbe AO. West Afr J Med. 2010 Jan-Feb;29(1):44-6. Leptomeningeal cyst in a child after head trauma: a case report.PMID 20496339
  15. ^ Gupta SK, Reddy NM, Khosla VK, Mathuriya SN, Shama BS, Pathak A, Tewari MK, Kak VK. Growing skull fractures: a clinical study of 41 patients. Acta Neurochir (Wien). 1997;139(10):928-32. PMID 9401652
  16. ^ Ersahin Y, Gülmen V, Palali I, Mutluer S. Growing skull fractures (craniocerebral erosion). Neurosurg Rev. 2000 Sep;23(3):139-44. PMID 11086738
  17. ^ Muhonen MG, Piper JG, Menezes AH. Surg Neurol. 1995 Apr;43(4):367-72; discussion 372-3. Pathogenesis and treatment of growing skull fractures.PMID 7792708
  18. ^ Caffo M, Germanò A, Caruso G, Meli F, Calisto A, Tomasello F. Acta Neurochir (Wien). 2003 Mar;145(3):201-8; discussion 208. Growing skull fracture of the posterior cranial fossa and of the orbital roof. PMID 12632116
  19. ^ Ziyal IM, Aydin Y, Türkmen CS, Salas E, Kaya AR, Ozveren F. Acta Neurochir (Wien). 1998;140(7):651-4. The natural history of late diagnosed or untreated growing skull fractures: report on two cases.PMID 9781277
  20. ^ Locatelli D, Messina AL, Bonfanti N, Pezzotta S, Gajno TM. Growing fractures: an unusual complication of head injuries in pediatric patients. Neurochirurgia (Stuttg). 1989 Jul;32(4):101-4. PMID 2770958
  21. ^ Pezzotta S, Silvani V, Gaetani P, Spanu G, Rondini G. J Neurosurg Sci. 1985 Apr-Jun;29(2):129-35. Growing skull fractures of childhood. Case report and review of 132 cases. PMID 4093801
  22. ^ Donahue DJ, Sanford RA, Muhlbauer MS, et al. Cranial burst fracture in infants: acute recognition and management. Childs Nerv Syst. 1995 Dec;11(12):692-7. PMID 8750951
  23. ^ Fundamentals of diagnostic radiology by William E. Brant, Clyde A. Helms p.56
  24. ^ Rehman L, Ghani E, Hussain A, et al. Infection in compound depressed fracture of the skull. J Coll Physicians Surg Pak. 2007 Mar;17(3):140-3. PMID 17374298
  25. ^ Elevated skull fracture[www.ijntonline.com/Dec07/abstracts/abs12.PDF]
  26. ^ Adeolu AA, Shokunbi MT, Malomo AO, et al. Compound elevated skull fracture: a forgotten type of skull fracture. Surg Neurol. 2006 May;65(5):5 PMID 16630918
  27. ^ Jackson JC. J Trauma. 2007 Jan;62(1):80-8. Long-term cognitive, emotional, and functional outcomes in trauma intensive care unit survivors without intracranial hemorrhage.PMID 17215737
  28. ^ Smith-Seemiller L. Brain Inj. 1997 Mar;11(3):191-6. Impact of skull fracture on neuropsychological functioning following closed head injury. PMID 9058000

Bibliography[edit]

External links[edit]