Snub square tiling

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Snub square tiling
Snub square tiling
This coloring has xx (pg) symmetry
Type Semiregular tiling
Vertex configuration 3.3.4.3.4
Schläfli symbol s{4,4}
sr{4,4}
Wythoff symbol | 4 4 2
Coxeter diagram CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Symmetry p4g, [4+,4], (4*2)
p4, [4,4]+, (442)
Rotation symmetry p4, [4,4]+, (442)
Bowers acronym Snasquat
Dual Cairo pentagonal tiling
Properties Vertex-transitive
Snub square tiling vertfig.png
Vertex figure: 3.3.4.3.4

In geometry, the snub square tiling is a semiregular tiling of the Euclidean plane. There are three triangles and two squares on each vertex. It has Schläfli symbol of s{4,4}.

Conway calls it a snub quadrille, constructed by a snub operation applied to a square tiling (quadrille).

There are 3 regular and 8 semiregular tilings in the plane.

Uniform colorings[edit]

There are two distinct uniform colorings of a snub square tiling. (Naming the colors by indices around a vertex (3.3.4.3.4): 11212, 11213.)

Coloring Uniform tiling 44-h01.png Uniform tiling 44-snub.png
Symmetry 4*2 (p4g) 442 (p4)
Schläfli symbol s{4,4} sr{4,4}
Wythoff symbol   | 4 4 2
Coxeter-Dynkin diagram CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png

Circle packing[edit]

The snub square tiling can be used as a circle packing, placing equal diameter circles at the center of every point. Every circle is in contact with 5 other circles in the packing (kissing number).

Snub square tiling circle packing.png

Wythoff construction[edit]

The snub square tiling can be constructed as a snub operation from the square tiling, or as an alternate truncation from the truncated square tiling.

An alternate truncation deletes every other vertex, creating a new triangular faces at the removed vertices, and reduces the original faces to half as many sides. In this case starting with a truncated square tiling with 2 octagons and 1 square per vertex, the octagon faces into squares, and the square faces degenerate into edges and 2 new triangles appear at the truncated vertices around the original square.

If the original tiling is made of regular faces the new triangles will be isosceles. Starting with octagons which alternate long and short edge lengths will produce a snub tiling with perfect equilateral triangle faces.

Example:

Uniform tiling 44-t012.png
Regular octagons alternately truncated
(Alternate
truncation)
Nonuniform tiling 44-snub.png
Isosceles triangles (Nonuniform tiling)
Nonuniform tiling 44-t012-snub.png
Nonregular octagons alternately truncated
(Alternate
truncation)
Uniform tiling 44-snub.png
Equilateral triangles

Related tilings[edit]

This tiling is related to the elongated triangular tiling which also has 3 triangles and two squares on a vertex, but in a different order.

The snub square tiling can be seen related to this 3-colored square tiling, with the yellow and red squares being twisted rigidly and the blue tiles being distorted into rhombi and then bisected into two triangles.
Uniform tiling 44-t02.png

The snub square tiling is third in a series of snub polyhedra and tilings with vertex figure 3.3.4.3.n.

Dimensional family of snub polyhedra and tilings: 3.3.4.3.n
Symmetry
4n2
[n,4]+
Spherical Euclidean Compact hyperbolic Paracompact
242
[2,4]+
342
[3,4]+
442
[4,4]+
542
[5,4]+
642
[6,4]+
742
[7,4]+
842
[8,4]+...
∞42
[∞,4]+
Snub
figure
Spherical square antiprism.png
3.3.4.3.2
Spherical snub cube.png
3.3.4.3.3
Uniform tiling 44-snub.png
3.3.4.3.4
Uniform tiling 54-snub.png
3.3.4.3.5
Uniform tiling 64-snub.png
3.3.4.3.6
Uniform tiling 74-snub.png
3.3.4.3.7
Uniform tiling 84-snub.png
3.3.4.3.8
Uniform tiling i42-snub.png
3.3.4.3.∞
Coxeter
Schläfli
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node h.png
sr{2,4}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
sr{3,4}
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
sr{4,4}
CDel node h.pngCDel 5.pngCDel node h.pngCDel 4.pngCDel node h.png
sr{5,4}
CDel node h.pngCDel 6.pngCDel node h.pngCDel 4.pngCDel node h.png
sr{6,4}
CDel node h.pngCDel 7.pngCDel node h.pngCDel 4.pngCDel node h.png
sr{7,4}
CDel node h.pngCDel 8.pngCDel node h.pngCDel 4.pngCDel node h.png
sr{8,4}
CDel node h.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node h.png
sr{∞,4}
Snub
dual
figure
Spherical tetragonal trapezohedron.png
V3.3.4.3.2
Spherical pentagonal icositetrahedron.png
V3.3.4.3.3
Tiling Dual Semiregular V3-3-4-3-4 Cairo Pentagonal.svg
V3.3.4.3.4
Order-5-4 floret pentagonal tiling.png
V3.3.4.3.5
V3.3.4.3.6 V3.3.4.3.7 V3.3.4.3.8 V3.3.4.3.∞
Coxeter CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 3.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 5.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 6.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 7.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 8.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node fh.png
Uniform tilings based on square tiling symmetry
Symmetry: [4,4], (*442) [4,4]+, (442) [4,4+], (4*2)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-t0.png Uniform tiling 44-t01.png Uniform tiling 44-t1.png Uniform tiling 44-t12.png Uniform tiling 44-t2.png Uniform tiling 44-t02.png Uniform tiling 44-t012.png Uniform tiling 44-snub.png Uniform tiling 44-h01.png
{4,4} t{4,4} r{4,4} t{4,4} {4,4} rr{4,4} tr{4,4} sr{4,4} s{4,4}
Uniform duals
CDel node f1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel 4.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 4.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node fh.pngCDel 4.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node.pngCDel 4.pngCDel node fh.pngCDel 4.pngCDel node fh.png
Uniform tiling 44-t0.png Tetrakis square tiling.png Uniform tiling 44-t0.png Tetrakis square tiling.png Uniform tiling 44-t0.png Uniform tiling 44-t0.png Tetrakis square tiling.png Tiling Dual Semiregular V3-3-4-3-4 Cairo Pentagonal.svg
V4.4.4.4 V4.8.8 V4.4.4.4 V4.8.8 V4.4.4.4 V4.4.4.4 V4.8.8 V3.3.4.3.4

Cairo pentagonal tiling[edit]

The dual of the snub square tiling is the Cairo pentagonal tiling, given its name because several streets in Cairo are paved in this design.[1][2] It is one of 14 known isohedral pentagon tilings.

It is also called MacMahon's net[3] after Percy Alexander MacMahon and his 1921 publication New Mathematical Pastimes.[4]

Conway calls it a 4-fold pentille.[5]

See also[edit]

References[edit]

  1. ^ Alsina, Claudi; Nelsen, Roger B. (2010), Charming proofs: a journey into elegant mathematics, Dolciani mathematical expositions 42, Mathematical Association of America, p. 164, ISBN 978-0-88385-348-1 .
  2. ^ Martin, George Edward (1982), Transformation Geometry: An Introduction to Symmetry, Undergraduate Texts in Mathematics, Springer, p. 119, ISBN 978-0-387-90636-2 .
  3. ^ O'Keeffe, M.; Hyde, B. G. (1980), "Plane nets in crystal chemistry", Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 295 (1417): 553–618, doi:10.1098/rsta.1980.0150, JSTOR 36648 .
  4. ^ Macmahon, Major P. A. (1921), New Mathematical Pastimes, University Press .
  5. ^ John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 [1] (Chapter 21, Naming Archimedean and Catalan polyhedra and tilings, p288 table)

External links[edit]