# Snub triapeirogonal tiling

Snub triapeirogonal tiling

Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex figure 3.3.3.3.∞
Schläfli symbol sr{∞,3}
Wythoff symbol | ∞ 3 2
Coxeter diagram
Symmetry group [∞,3]+, (∞32)
Dual Order-3-infinite floret pentagonal tiling
Properties Vertex-transitive Chiral

In geometry, the snub triapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of sr{∞,3}.

## Images

Drawn in chiral pairs, with edges missing between black triangles:

The dual tiling:

## Related polyhedra and tiling

This hyperbolic tiling is topologically related as a part of sequence of uniform snub polyhedra with vertex configurations (3.3.3.3.n), and [n,3] Coxeter group symmetry.

Dimensional family of snub polyhedra and tilings: 3.3.3.3.n
Symmetry
n32
[n,3]+
Spherical Euclidean Compact hyperbolic Paracompact
232
[2,3]+
D3
332
[3,3]+
T
432
[4,3]+
O
532
[5,3]+
I
632
[6,3]+
P6
732
[7,3]+
832
[8,3]+...
∞32
[∞,3]+
Snub
figure

3.3.3.3.2

3.3.3.3.3

3.3.3.3.4

3.3.3.3.5

3.3.3.3.6

3.3.3.3.7

3.3.3.3.8

3.3.3.3.∞
Coxeter
Schläfli

sr{2,3}

sr{3,3}

sr{4,3}

sr{5,3}

sr{6,3}

sr{7,3}

sr{8,3}

sr{∞,3}
Snub
dual
figure

V3.3.3.3.2

V3.3.3.3.3

V3.3.3.3.4

V3.3.3.3.5

V3.3.3.3.6

V3.3.3.3.7
V3.3.3.3.8
V3.3.3.3.∞
Coxeter
Noncompact hyperbolic uniform tilings in [∞,3] family
Symmetry: [∞,3], (*∞32) [∞,3]+
(∞32)
[1+,∞,3]
(*∞33)
[∞,3+]
(3*∞)

=

=

=
=
or
=
or

=
{∞,3} t{∞,3} r{∞,3} t{3,∞} {3,∞} rr{∞,3} tr{∞,3} sr{∞,3} h{∞,3} h2{∞,3} s{3,∞}
Uniform duals
V∞3 V3.∞.∞ V(3.∞)2 V6.6.∞ V3 V4.3.4.∞ V4.6.∞ V3.3.3.3.∞ V(3.∞)3 V3.3.3.3.3.∞