Sodium-cooled fast reactor

From Wikipedia, the free encyclopedia
  (Redirected from Sodium-Cooled Fast Reactor)
Jump to: navigation, search
For other uses, see SFR (disambiguation).
Pool type sodium-cooled fast reactor (SFR)

The sodium-cooled fast reactor or SFR is a Generation IV reactor project to design an advanced fast neutron reactor.

It builds on two closely related existing projects, the LMFBR and the Integral Fast Reactor, with the objective of producing a fast-spectrum, sodium-cooled reactor.

The reactors are intended for use in nuclear power plants to produce nuclear power from nuclear fuel.

Fuel cycle[edit]

The nuclear fuel cycle employs a full actinide recycle with two major options: One is an intermediate-size (150–600 MWe) sodium-cooled reactor with uranium-plutonium-minor-actinide-zirconium metal alloy fuel, supported by a fuel cycle based on pyrometallurgical reprocessing in facilities integrated with the reactor. The second is a medium to large (500–1,500 MWe) sodium-cooled reactor with mixed uranium-plutonium oxide fuel, supported by a fuel cycle based upon advanced aqueous processing at a central location serving a number of reactors. The outlet temperature is approximately 510–550 degrees Celsius for both.

Sodium as a coolant[edit]

Advantages[edit]

Schematic diagram showing the difference between the Loop and Pool designs of a liquid metal fast breeder reactor

An advantage of liquid metal coolants is high heat capacity which provides thermal inertia against overheating.[1] Water is difficult to use as a coolant for a fast reactor because water acts as a neutron moderator that slows the fast neutrons into thermal neutrons. While it may be possible to use supercritical water as a coolant in a fast reactor, this would require a very high pressure. In contrast, sodium atoms are much heavier than both the oxygen and hydrogen atoms found in water, and therefore the neutrons lose less energy in collisions with sodium atoms. Sodium also need not be pressurized since its boiling point is much higher than the reactor's operating temperature, and sodium does not corrode steel reactor parts.[1]

Disadvantages[edit]

A disadvantage of sodium is its chemical reactivity, which requires special precautions to prevent and suppress fires. If sodium comes into contact with water it explodes, and it burns when in contact with air. This was the case at the Monju Nuclear Power Plant in a 1995 accident. In addition, neutrons cause it to become radioactive; however, activated sodium has a half-life of only 15 hours.[1]

Design goals[edit]

The operating temperature should not exceed the melting temperature of the fuel. Fuel-to-cladding chemical interaction (FCCI) has to be designed against. FCCI is eutectic melting between the fuel and the cladding; uranium, plutonium, and lanthanum (a fission product) inter-diffuse with the iron of the cladding. The alloy that forms has a low eutectic melting temperature. FCCI causes the cladding to reduce in strength and could eventually rupture. The amount of transuranic transmutation is limited by the production of plutonium from uranium. A design work-around has been proposed to have an inert matrix. Magnesium oxide has been proposed as the inert matrix. Magnesium oxide has an entire order of magnitude smaller probability of interacting with neutrons (thermal and fast) than elements like iron.[2]

Actinides and fission products by half-life
Actinides[3] by decay chain Half-life
range (a)
Fission products by yield[4]
4n 4n+1 4n+2 4n+3
4.5–7% 0.04–1.25% <0.001%
228Ra 4–6 155Euþ
244Cm 241Puƒ 250Cf 227Ac 10–29 90Sr 85Kr 113mCdþ
232Uƒ 238Pu 243Cmƒ 29–97 137Cs 151Smþ 121mSn
248Bk[5] 249Cfƒ 242mAmƒ 141–351

No fission products
have a half-life
in the range of
100–210k years…

241Am 251Cfƒ[6] 430–900
226Ra 247Bk 1.3k–1.6k
240Pu 229Th 246Cm 243Am 4.7k–7.4k
245Cmƒ 250Cm 8.3k–8.5k
239Puƒ 24.1k
230Th 231Pa 32k–76k
236Npƒ 233Uƒ 234U 150k–250k 99Tc 126Sn
248Cm 242Pu 327k–375k 79Se
1.53M 93Zr
237Np 2.1M–6.5M 135Cs 107Pd
236U 247Cmƒ 15M–24M 129I
244Pu 80M

...nor beyond 15.7M[7]

232Th 238U 235Uƒ№ 0.7G–14.1G

Legend for superscript symbols
₡  has thermal neutron capture cross section in the range of 8–50 barns
ƒ  fissile
metastable isomer
№  naturally occurring radioactive material (NORM)
þ  neutron poison (thermal neutron capture cross section greater than 3k barns)
†  range 4a–97a: Medium-lived fission product
‡  over 200ka: Long-lived fission product

The SFR is designed for management of high-level wastes and, in particular, management of plutonium and other actinides. Important safety features of the system include a long thermal response time, a large margin to coolant boiling, a primary system that operates near atmospheric pressure, and intermediate sodium system between the radioactive sodium in the primary system and the water and steam in the power plant. With innovations to reduce capital cost, such as making a modular design, removing a primary loop, integrating the pump and intermediate heat exchanger, or simply find better materials for construction, the SFR can be a viable technology for electricity generation.[8]

The SFR's fast spectrum also makes it possible to use available fissile and fertile materials (including depleted uranium) considerably more efficiently than thermal spectrum reactors with once-through fuel cycles.

Reactors[edit]

Sodium-cooled reactors have included:

Most of these were experimental plants, which are no longer operational

Related:

See also[edit]

References[edit]

  1. ^ a b c Fanning, Thomas H. (May 3, 2007). "Sodium as a Fast Reactor Coolant" (PDF). Topical Seminar Series on Sodium Fast Reactors. Nuclear Engineering Division, U.S. Nuclear Regulatory Commission, U.S. Department of Energy. 
  2. ^ Bays SE, Ferrer RM, Pope MA, Forget B (February 2008). "Neutronic Assessment of Transmutation Target Compositions in Heterogeneous Sodium Fast Reactor Geometries" (PDF). Idaho National Laboratory, U.S. Department of Energy. INL/EXT-07-13643 Rev. 1. 
  3. ^ Plus radium (element 88). While actually a sub-actinide, it immediately precedes actinium (89) and follows a three element gap of instability after polonium (84) where no isotopes have half-lives of at least four years (the longest-lived isotope in the gap is radon-222 with a half life of less than four days). Radium's longest lived isotope, at a notable 1600 years, thus merits the element's inclusion here.
  4. ^ Specifically from thermal neutron fission of U-235, e.g. in a typical nuclear reactor.
  5. ^ Milsted, J.; Friedman, A. M.; Stevens, C. M. (1965). "The alpha half-life of berkelium-247; a new long-lived isomer of berkelium-248". Nuclear Physics 71 (2): 299. doi:10.1016/0029-5582(65)90719-4.  edit
    "The isotopic analyses disclosed a species of mass 248 in constant abundance in three samples analysed over a period of about 10 months. This was ascribed to an isomer of Bk248 with a half-life greater than 9 y. No growth of Cf248 was detected, and a lower limit for the β half-life can be set at about 104 y. No alpha activity attributable to the new isomer has been detected; the alpha half-life is probably greater than 300 y."
  6. ^ This is the heaviest isotope with a half-life of at least four years before the "Sea of Instability".
  7. ^ Excluding those "classically stable" isotopes with half-lives significantly in excess of 232Th, e.g. while 113mCd has a half-life of only fourteen years, that of 113Cd is nearly eight quadrillion.
  8. ^ Lineberry MJ, Allen TR (October 2002). "The Sodium-Cooled Fast Reactor (SFR)" (PDF). Argonne National Laboratory, US Department of Energy. ANL/NT/CP-108933. 

External links[edit]