Sodium-ion battery

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Sodium-ion batteries are a type of reusable battery that uses sodium-ions as its charge carriers. This type of battery is in a developmental phase, but may prove to be a cheaper way to store energy than commonly used lithium-ion batteries.[1] Unlike sodium-sulfur batteries,[2] sodium ion batteries can be made portable and can function at room temperature (approx. 25˚C).

Energy Storage[edit]

Like all batteries, the sodium ion battery stores energy in chemical bonds in its anode. When the battery is charging Na+ ions de-intercalate and migrate towards the anode. Meanwhile charge balancing electrons pass from the cathode through the external circuit containing the charger and into the anode of the battery. During discharge the process reverses. Once a circuit is completed electrons pass back from the anode to the cathode and the Na+ ions travel back to the cathode.[3] Sodium is much more abundant than the lithium that makes up 2013's highest performing rechargeable batteries,[1] creating the potential for lower cost solutions.

Sodium ion cells have been reported with a voltage of 3.6 volts, able to maintain 115 mA·hr g−1 after 50 cycles, giving the battery a storage capacity of approximately 400 W·hr kg−1[4] Yet, sodium-ion batteries are still unable to maintain a strong charge after repeated charge and discharge. After 50 cycles most sodium-ion batteries tend to store about 50% of original capacity.[4]


Using NaxC6 as the anode, the average voltage on the low potential plateau was higher on Na cells compared to Li cells. The carbon materials can be derived from sugars.[5]

Tin-coated wood anodes can replace stiff anode bases that are too brittle to withstand the swelling and shrinking that happens as ions move to and from the anode. Wood fibers are supple enough withstand more than 400 charging cycles. After hundreds of times, the wood ended up wrinkled but intact. Computer models showed that that the wrinkles effectively relax the stress in the battery during charging and recharging, so that the battery can survive many cycles. Na ions move via the fiber cell walls and by diffusion at the tin (Sn) film surface.[6][7]


Tests of Na2FePO4F and Li2FePO4F cathode materials indicated that the sodium iron phosphate cathode easily replaces a lithium iron phosphate in a Li cell.[4] The combined lithium-ion and sodium-ion make up would lower the overall price of the battery.[4]

The electrode material P2-Na2/3[Fe1/2Mn1/2]O2 delivers 190 mAh g−1 of reversible capacity in sodium cells using the electrochemically active Fe3+/Fe4+ redox at room temperature.[8] Triclinic Na2FeP2O7 has been examined as rechargeable sodium ion batteries by glass-ceramics method. The precursor glass, also made of Na2FeP2O7, was prepared by melt-quenching method. Na2FeP2O7 exhibits 2.9 V, 88 mAh/g.[9]

Separately, chromium cathodes employed the reaction:

NaF + (1−x)VPO4 + xCrPO4 → NaV1−xCrxPO4F

These cathodes retained more capacity through cycles of charge and discharge. The effects of Cr doping on cathode performance materials was analyzed in terms of crystal structure, charge/discharge curves and cycle performance and indicated that the Cr-doped materials expressed better cycle stability. The initial reversible capacity was 83.3 mAh g1 and the first chargedischarge efficiency is about 90.3%. The reversible capacity retention of the material was 91.4% after the 20th cycles.[4][10]

Cathode materials The first charge capacity (mAh g−1) The first discharge capacity (mAh g−1) Capacity loss in the first cycle (mAh g−1) Reversible efficiency in the first cycle (%) The discharge capacity at the 20th (mAh g−1) The capacity retention ratio at the 20th (%)
NaV0.92Cr0.08PO4F 83.3 75.2 8.1 90.3 68.8 91.4
NaV0.96Cr0.04PO4F 93.3 82.6 10.7 88.5 67.9 82.2
NaVPO4F 106.9 87.7 19.2 82.0 64.5 73.5


An Indian-origin researcher has discovered a way to use composite paper as an electrode.[11]


  1. ^ a b Kevin Bullis, “Sodium-Ion Cells for Cheap Energy Storage”, Technology Review, Published by MIT,Wednesday December 2, 2009
  2. ^ "About Sodium-Sulfur (NaS) Batteries" The Energy Blog, January 18, 2006,
  3. ^ Steven S. Zumdahl "Chemical Principles, 6th Edition" Cengage Learning 2009 p.495
  4. ^ a b c d e Ellis, B. L.,Makahnouk, W. R. M.; Makimura, Y.,Toghill, K.,Nazar, L. F. "A multifunctional 3.5V iron-based phosphate cathode for rechargeable batteries" Nature Publishing, 1476-1122
  5. ^ D. A. Stevens and J. R. Dahn, "High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries”, Journal of The Electrochemical Society, vol.147,1271-1273 (2000)
  6. ^ "A battery made of wood: long-lasting, efficient, environmentally friendly". KurzweilAI. Retrieved 2013-06-25. 
  7. ^ Zhu, H.; Jia, Z.; Chen, Y.; Weadock, N.; Wan, J.; Vaaland, O.; Han, X.; Li, T.; Hu, L. (2013). "Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir". Nano Letters 13 (7): 130618094632004. doi:10.1021/nl400998t.  edit
  8. ^ P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries, Nature Materials 11, 512–517 (2012) doi:10.1038/nmat3309
  9. ^ Honma, T.; Togashi, T.; Ito, N.; Komatsu, T. (2012). "Fabrication of Na2FeP2O7 glass-ceramics for sodium ion battery". Journal of the Ceramic Society of Japan 120 (1404): 344. doi:10.2109/jcersj2.120.344.  edit
  10. ^ The preparation of NaV1−xCrxPO4F cathode materials for sodium-ion battery" Haitao Zhuoa, Xianyou Wanga, Anping Tanga, Zhiming Liua, Sergio Gamboab and P.J. Sebastianb, Science Direct,Received 1 December 2005; revised 18 December 2005; accepted 22 December 2005. Available online 14 February 2006.
  11. ^ Indian-origin develops paper electrode for sodium-ion battery, The Economist Times, 30 January 2014