Sodium fluoroacetate

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Sodium fluoroacetate
Sodium-fluoroacetate-2D-skeletal.svg
Sodium-fluoroacetate-xtal-3D-SF.png
Multiple sodium fluoroacetate molecules arranged in a crystal. Fluorines are shown in green, sodium purple, oxygen red.
Identifiers
CAS number 62-74-8 N[1]
PubChem 16212360
ChemSpider 5893 YesY
KEGG C18588 N
ChEBI CHEBI:38699 YesY
ChEMBL CHEMBL369611 YesY
RTECS number AH9100000
Jmol-3D images Image 1
Properties
Molecular formula NaFC2H2O2
Molar mass 100.0 g/mol
Appearance Fluffy, colorless to white powder
Melting point 200 °C (325.15 K)
Boiling point Decomposes
Solubility in water soluble
Hazards
R/S statement R26 R27 R28
Main hazards Toxic, Flammable
Flash point  ?
LD50 100 ug/kg (oral, rat)[2]
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 N (verify) (what is: YesY/N?)
Infobox references

Sodium fluoroacetate, known in pesticide form as 1080, is the organofluorine chemical compound with the formula FCH2CO2Na. This colourless salt has a taste similar to that of sodium chloride and is used as a metabolic poison. It occurs naturally as an anti-herbivore metabolite in various plants but can also be produced synthetically. It is a derivative of fluoroacetic acid, a carboxylic acid. The more common fluorinated acetic acid trifluoroacetic acid and its derivatives are far less toxic.

History and production[edit]

The effectiveness of sodium fluoroacetate as a rodenticide was reported in 1942.[3] The name "1080" refers to the catalogue number of the poison, which became its brand name.[4]

The salt is synthesized by treating sodium chloroacetate with potassium fluoride.[5]

The only company now producing 1080 is the Tull Chemical Company in Alabama, US, who export the material to Mexico and Israel (as a rodenticide), Australia (where its used to kill wild dogs, feral pigs and foxes) and New Zealand (for possum control). Use of 1080 in the US itself is tightly controlled, and it may only be used in chemical collars on domestic herbivores, to kill coyotes.

Occurrence[edit]

Dichapetalum cymosum

Fluoroacetate occurs naturally in at least 40 plants in Australia, Brazil, and Africa. It was first identified in the poison leaf (gifblaar) Dichapetalum cymosum by Marais in 1944.[6][7] As early as 1904, colonists in Sierra Leone used extracts of Chailletia toxicaria, which also contains fluoroacetic acid or its salts, to poison rats.[8][9][10] Several native Australian plant genera contain the toxin, including: Gastrolobium, Gompholobium, Oxylobium, Nemcia and Acacia.

Fluoroacetate occurrence in Gastrolobium species[edit]

Gastrolobium is a genus of flowering plants in the family Fabaceae. There are over 100 species in this genus, and all but two are native to the south west region of Western Australia, where they are known as "poison peas". Gastrolobium growing in south western Australia are unique in their ability to concentrate fluoroacetate from low fluorine soils.[11] Brush-tailed possums, bush rats and western grey kangaroos native to this region are capable of safely eating plants containing fluoroacetate, but livestock and introduced species from elsewhere in Australia are highly-susceptible to the poison,[12] as are species introduced from outside Australia, such as the red fox. The fact that many Gastrolobium species also have high secondary toxicity to non-native carnivores is thought to have limited the ability of cats to establish populations in locations where the plants form a major part of the understorey vegetation.[13]

The presence of Gastrolobium species in the fields of farmers in Western Australia has often forced these farmers to 'scalp' their land, that is remove the top soil and any poison pea seed which it may contain, and replace it with a new poison pea-free top soil sourced from elsewhere in which to sow crops. Similarly, following bushfires in north-western Queensland cattlemen have to move livestock before the poisonous Gastrolobium grandiflorum emerges from the ashes.[14]

Toxicology[edit]

Fluoroacetate is toxic to all obligate aerobic organisms and highly toxic to mammals and insects.[4] The oral dose of fluoroacetate sufficient to be lethal in humans is 2–10 mg/kg.[15]

The toxicity varies with species. The New Zealand Food Safety Authority established lethal doses for a number of species. Dogs, cats and pigs appear to be most susceptible to poisoning.[16]

The enzyme fluoroacetate dehalogenase has been discovered in a soil bacterium, which can detoxify fluoroacetate in the surrounding medium.

Mechanism of action[edit]

Fluoroacetate is similar to acetate, which has a pivotal role in cellular metabolism. Fluoroacetate disrupts the citric acid cycle (also known as the Krebs cycle) by combining with coenzyme A to form fluoroacetyl CoA, which reacts with citrate synthase to produce fluorocitrate. A metabolite of fluorocitrate binds very tightly to aconitase, thereby halting the citric acid cycle. This inhibition results in an accumulation of citrate in the blood, which deprives cells of energy.[4]

Symptoms[edit]

In humans, the symptoms of poisoning normally appear between 30 minutes and three hours after exposure. Initial symptoms typically include nausea, vomiting and abdominal pain; sweating, confusion and agitation follow. In significant poisoning, cardiac abnormalities including tachycardia or bradycardia, hypotension and ECG changes develop. Neurological effects include muscle twitching and seizures; consciousness becomes progressively impaired after a few hours leading to coma. Death is normally due to ventricular arrhythmias, progressive hypotension unresponsive to treatment, and secondary lung infections.[4]

Symptoms in domestic animals vary: dogs tend to show nervous system signs such as convulsions, vocalization and uncontrollable running, whilst large herbivores such as cattle and sheep more predominantly show cardiac signs.[17]

Sub-lethal doses of sodium fluoroacetate may cause damage to tissues with high energy needs — in particular, the brain, gonads, heart, lungs and fetus. Sub-lethal doses are typically completely metabolised and excreted within four days.[18]

Treatment[edit]

Effective antidotes are unknown. Research in monkeys has shown that the use of glyceryl monoacetate can prevent problems if given after ingestion of sodium fluoroacetate, and this therapy has been tested in domestic animals with some positive results. In theory, glyceryl monoacetate supplies acetate ions to allow continuation of cellular respiration which the sodium fluoroacetate had disrupted.[19]

Experiments of Dr Goncharov and co-workers resulted in development of a successful therapeutic complex, containing a phenothiazine compound, a dioic acid compound and a pharmaceutically acceptable carrier. In another aspect the pharmaceutical composition can include a phenothiazine compound, a nitroester compound, ethanol and a pharmaceutically acceptable carrier.[20]

In clinical cases, use of muscle relaxants, anti-convulsants, mechanical ventilation, and other supportive measures may all be required. Few animals or people have been treated successfully after significant sodium fluoroacetate ingestions.[21]

Pesticide use[edit]

Common Brushtail Possum, an invasive pest in New Zealand whose population is controlled with sodium fluoroacetate.

Sodium fluoroacetate is used as a pesticide, especially for mammalian pest species. Farmers and graziers use the poison to protect pastures and crops from various herbivorous mammals. In New Zealand and Australia it is also used to control invasive non-native mammals that prey on or compete with native wildlife and vegetation.

Australia[edit]

Sign warning of poisonous sodium fluoroacetate baits

In Australia, sodium fluoroacetate was first used in rabbit control programmes in the early 1950s, where it is regarded as having "a long history of proven effectiveness and safety".[22] It is seen as a critical component of the integrated pest-control programmes for rabbits, foxes, wild dogs, and feral pigs. Since 1994, broad-scale fox control using 1080 meat baits in Western Australia has significantly improved the population numbers of several native species and led, for the first time, to three species of mammals being taken off the state's endangered species list. In Australia, minor direct mortality of native animal populations from 1080 baits is regarded as acceptable, compared to the predatory and competitive effects of those introduced species being managed using 1080.[23]

Western Shield is a project to boost populations of endangered mammals in south-west Australia conducted by the DEC. The project entails distributing fluoroacetate-baited meat from the air to kill predators. Wild dogs and foxes will readily eat the baited meat. Cats pose a greater difficulty as they are generally not interested in scavenging. However, an Australian RSPCA-commissioned study criticized 1080, calling it an inhumane killer.[24] Some Western Australian herbivores (notably, the local subspecies of the Tammar Wallaby, Macropus eugenii derbianus, but not the subspecies M. e. eugenii of southern Australia and M. e. decres on Kangaroo Island) have, by natural selection, developed partial immunity to the effects of fluoroacetate,[25] so that its use as a poison has the advantage of reduced collateral damage to native herbivores.

In 2011, over 3,750 toxic baits containing 3 ml of 1080 were laid across 520 hectares between the Tasmanian settlements of Southport and Hobart as part of an ongoing attempt at the world's biggest invasive animal eradication operation – the eradication of red foxes from the island state. The baits were spread at the rate of one per 10 hectares and were buried, to mitigate the risk to non-target wildlife species like Tasmanian devils.[26]

Native animals are also targeted with 1080. During May 2005 up to 200,000 Bennett's wallabies on King Island were intentionally killed in one of the largest coordinated 1080 poisonings seen in Tasmania.[27][28]

New Zealand[edit]

Worldwide, New Zealand is the largest user of sodium fluoroacetate.[15] This high usage is attributable to the fact that, apart from three species of bat, New Zealand has no native land mammals, and those that have been introduced have had devastating effects on vegetation and native species. 1080 is used to control possums, rats, stoats, and rabbits.[29] The largest users are the Animal Health Board and the Department of Conservation.

United States[edit]

Sodium fluoroacetate is used in the United States to kill coyotes.[30] Prior to 1972 when the EPA cancelled all uses, sodium fluoroacetate was used much more widely as a cheap[31] predacide and rodenticide; in 1985, the restricted-use "toxic collar" approval was finalized.[32]

Other countries[edit]

1080 is used as a rodenticide in Mexico, Japan, Korea, and Israel.[4][33]

Environmental impacts[edit]

Water[edit]

Since 1080 is highly water soluble, it will be dispersed and diluted in the environment by rain and stream water. Sodium monofluoroacetate at the concentrations found in the environment after standard baiting operations will break down in natural water containing living organisms, such as aquatic plants or micro-organisms. Water-monitoring surveys, conducted during the 1990s, have confirmed that significant contamination of waterways following aerial application of 1080 bait is unlikely.[34] Research by NIWA showed that 1080 deliberately placed in small streams for testing was undetectable after 8 hours.[35]

In New Zealand, surface water is routinely monitored after aerial application of 1080 and water samples are collected immediately after application when there is the highest possibility of detecting contamination.[36] Of 2442 water samples tested in New Zealand between 1990 and 2010, following aerial 1080 operations: 96.5% had no detectable 1080 at all; and of all the samples, only six were equal to, or above the Ministry of Health level for drinking water and none of these came from drinking water supplies.[37] Of 592 samples taken from human or stock drinking supplies, only four contained detectable 1080 residues at 0.1ppb (1 sample) and 0.2 ppb (3 samples) - all well below the Ministry of Health level of 2 ppb.

In an experiment funded by the Animal Health Board and conducted by NIWA simulating the effects of rainfall on 1080 on a steep soil covered hillside a few meters from a stream, it was found that 99.9% of the water containing 1080 leached straight into the soil and did not flow over the ground to the stream as had been expected. The experiment also measured contamination of soil water which was described as the water carried through the soil underground at short horizontal distances (0.5-3m), downhill towards the stream. The experiment did not measure contamination of deeper soil and ground water immediately beneath the site of application.[38]

Soil[edit]

The fate of 1080 in the soil has been well-established by research defining the degradation of naturally-occurring fluoroacetate (Oliver, 1977). Sodium monofluoroacetate is water soluble and residues from uneaten baits leach into the soil where they are degraded to non-toxic metabolites by soil microorganisms, including bacteria (Pseudomonas) and the common soil fungus (Fusarium solani) (David and Gardiner, 1966; Bong, Cole and Walker, 1979; Walker and Bong, 1981).[39]

Birds[edit]

Although it is now infrequent, individual aerial 1080 operations can still sometimes affect local bird populations if not carried out with sufficient care. In New Zealand, individuals from 19 species of native birds and 13 species of introduced birds have been found dead after aerial 1080 drops. Most of these recorded bird deaths were associated with only four operations in the 1970s that used poor quality carrot baits with many small fragments.[40] On the other hand, many native New Zealand bird populations have been successfully protected by reducing predator numbers through aerial 1080 operations. Blue Duck,[41] New Zealand Pigeon,[42] kiwi,[43] New Zealand Kaka,[44] New Zealand Falcon[45]Tomtit,[46] New Zealand Robin,[47][48] New Zealand parakeets (kākāriki) and Yellowhead (mōhua) [49] have all responded well to pest control programmes using aerial 1080 operations, with increased chick and adult survival, and increases in population size. In contrast, seven of 38 tagged kea, the endemic alpine parrot, were killed[50] during an aerial possum control operation in Ōkārito conducted by DOC and AHB in August 2011. Because of their omnivorous feeding habits and inquisitive behaviour, kea are known to be particularly susceptible to 1080 poison baits, as well as other environmental poisons like the zinc and lead used in the flashings of backcountry huts and farm buildings.[51]

Reptiles and amphibians[edit]

Reptiles and amphibians are susceptible to 1080, although much less sensitive to it than mammals.[52] Amphibian and reptile species that have been tested in Australia are generally more tolerant to 1080 poison than are most other animals.[53] McIlroy (1992) calculated that even if lizards fed entirely on insects or other animals poisoned with 1080 they could never ingest enough poison to receive a lethal dose.[54] Laboratory trials in New Zealand simulating worst-case scenarios indicate that both Leiopelma archeyi and L. hochstetteri can absorb 1080 from contaminated water, substrate, or prey. The chance of this occurring in the wild is ameliorated by a variety of factors, including frog ecology. Captive maintenance and contamination problems rendered parts of this study inconclusive. Further population monitoring is recommended to provide more conclusive evidence than provided by this single study.[55] In New Zealand, the secondary poisoning of feral cats and stoats following 1080 operations is likely to have a positive effect on the recovery of native skink and gecko populations.[56] Controlling rabbits[57] and possums,[58] which compete for food with skinks and geckos, may also have benefits.

Fish[edit]

Fish generally have very low sensitivity to 1080. Toxicity tests have been conducted in the US on bluegill sunfish, rainbow trout and the freshwater invertebrate Daphnia magna. Tests at different 1080 concentrations on sunfish (for four days) and Daphnia (two days) showed that 1080 is "practically non-toxic" (a US EPA classification) to both these species. Rainbow trout were also tested over four days at four concentrations ranging from 39 to 170 mg 1080 per litre. From these results an LC50 can be calculated, which is the concentration of 1080 per litre of water which theoretically kills 50% of the test fish. The LC50 for rainbow trout was calculated to be 54 mg 1080/litre - far in excess of any known concentration of 1080 found in water samples following 1080 aerial operations. It is, therefore, reasonable to conclude that 1080 is most unlikely to cause mortality in freshwater fish.[59]

Invertebrates[edit]

Insects are susceptible to 1080 poisoning. Some field trials in New Zealand have shown that insect numbers can be temporarily reduced within 20 cm of toxic baits, but numbers return to normal levels within six days of the bait being removed.[60] Other trials have found no evidence that insect communities are negatively affected.[61] Another New Zealand study showed that wētā, native ants and kōura (freshwater crayfish) excrete 1080 within one to two weeks.[62] There is also evidence that 1080 aerial operations in New Zealand can benefit invertebrate species.[63] Both possums and rats are a serious threat to endemic invertebrates in New Zealand, where around 90 per cent of spiders and insects are endemic and have evolved without predatory mammals.[64] In a study on the diet of brushtail possums, 47.5 per cent of possum faeces examined between January 1979 and June 1983 contained invertebrates, mostly insects.[65] One possum can eat up to 60 endangered native land snails (Powelliphanta spp.) in one night[66]

References[edit]

  1. ^ http://chem.sis.nlm.nih.gov/chemidplus/rn/62-74-8
  2. ^ http://chem.sis.nlm.nih.gov/chemidplus/rn/62-74-8
  3. ^ Kalmbach, E. R. (1945). "Ten-Eighty, a War-Produced Rodenticide". Science 102 (2644): 232–233. doi:10.1126/science.102.2644.232. PMID 17778513. 
  4. ^ a b c d e Proudfoot, A. T.; Bradberry, S. M.; Vale, J. A. (2006). "Sodium fluoroacetate poisoning". Toxicology Reviews 25 (4): 213–219. doi:10.2165/00139709-200625040-00002. PMID 17288493. 
  5. ^ Aigueperse, J.; Mollard, P.; Devilliers, D.; Chemla, M.; Faron, R.; Romano, R.; Cuer, J. P. (2005), "Fluorine Compounds, Inorganic", Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, doi:10.1002/14356007.a11_307 
  6. ^ Marais, J. C. S. (1943). "The isolation of the toxic principle "K cymonate" from "Gifblaar", Dichapetalum cymosum". Onderstepoort Journal of Veterinary Science and Animal Industry 18: 203. 
  7. ^ Marais, J. C. S. (1944). "Monofluoroacetic acid, the toxic principle of "gifblaar" Dichapetalum cymosum". Onderstepoort Journal of Veterinary Science and Animal Industry 20: 67. 
  8. ^ Renner (1904). "Chemical and Physiological Examination of the Fruit of Chailletia Toxicaria". Jour African Soc.: 109. 
  9. ^ Power, F. B.; Tutin, F. (1906). "Chemical and Physiological Examination of the Fruit of Chailletia toxicaria". Journal of the American Chemical Society 28 (9): 1170–1183. doi:10.1021/ja01975a007. 
  10. ^ Vartiainen, T.; Kauranen, P. (1984). "The determination of traces of fluoroacetic acid by extractive alkylation, pentafluorobenzylation and capillary gas chromatography-mass spectrometry". Analytica Chimica Acta 157 (1): 91–97. doi:10.1016/S0003-2670(00)83609-0. 
  11. ^ Lee, J. (1998). "Deadly plants face threat of extinction". ANU Reporter (Australian National University) 29 (6). Retrieved 2012-08-07. 
  12. ^ McKenzie, R. (1997). "Australian Native Poisonous Plants". Australian Plants Online. Australian Native Plants Society. Retrieved 2012-08-07. 
  13. ^ Short, J.; Atkins, L.; Turner, B. (2005). Diagnosis of Mammal Decline in Western Australia, with Particular Emphasis on the Possible Role of Feral Cats and Poison Peas (pdf). Australia: Wildlife Research and Management Pty. Retrieved 2011-09-26. 
  14. ^ "Death lurks in the ashes on western farms". Townsville Bulletin. September 2011. Retrieved 2011-09-23. 
  15. ^ a b Beasley, Michael (August 2002). "Guidelines for the safe use of sodium fluoroacetate (1080)" (PDF). New Zealand Occupational Safety & Health Service. Retrieved 2007-12-17. 
  16. ^ "Controlled Pesticides: Sodium Fluoroacetate (1080) in Pest Control" (PDF). Agricultural Compounds and Veterinary Medicines Group. Retrieved 2007-12-17. 
  17. ^ Gupta, R. (2007). Veterinary Toxicology: Basic and Clinical Principles. Amsterdam: Elsevier. p. 556. ISBN 0-12-370467-7. Retrieved 2012-08-08. 
  18. ^ Eason, C. T.; Frampton, C. M.; Henderson, R.; Thomas, M. D.; Morgan, D. R. (1993). "Sodium monofluoroacetate and alternative toxins for possum control". New Zealand Journal of Zoology (Wellington, New Zealand: The Royal Society of New Zealand) 20 (3): 329–334. doi:10.1080/03014223.1993.10420354. ISSN 0301-4223. Retrieved 2010-07-02. "Sodium monofluoroacetate was readily absorbed and rapidly eliminated in all species: only traces were detectable in sheep muscle after 72-96 h" 
  19. ^ Brent, J. (2005). Critical Care Toxicology. St. Louis: Mosby. p. 970. ISBN 0-8151-4387-7. Retrieved 2010-07-28. "Glycerol monoacetate, 0.1 to 0.5 mL/kg/h, as a Krebs cycle substrate replacement, has prolonged survival in a primate model, but it also may aggravate toxicity and seems to be effective only early in the course." 
  20. ^ Goncharov N.V., Kuznetsov A.V., Glashkina L.M., Radilov A.S. Compositions and Methods for Treating Intoxications. United States Patent Application 20100249116, publication date 09/30/2010; see also: Goncharov N.V., Jenkins R.O., Radilov A.S. Toxicology of fluoroacetate: a review, with possible directions for therapy research // J.Appl.Toxicol.(2006)26:148-161
  21. ^ Rippe, J. M.; Irwin, R. S. (2008). Irwin and Rippe's Intensive Care Medicine. Philadelphia: Wolters Kluwer Health / Lippincott Williams & Wilkins. pp. 1666–1667. ISBN 0-7817-9153-7. Retrieved 2010-07-28. "General supportive measures are paramount and aimed at maintaining the airway, breathing, and circulation. Activated charcoal should be administered in all suspected ingestions presenting within 1 to 2 hours after ingestion. Seizures should be treated with benzodiazepines or barbiturates. Hypocalcemia and prolonged QTc intervals may require calcium and magnesium supplementation. Various treatments have been tested in animals [149,161-163]. The most useful agent appears to be glyceryl monoacetate, which provides excess acetate as a substrate for the TCA cycle. The clinical use of glyceryl monoacetate remains unproven, however." 
  22. ^ "1080 Summary information". Miscellaneous Publication No. 011/2002 (Department of Agriculture, Department of Conservation and Land Management, Department of Health). 2002. 
  23. ^ "The use of 1080 for pest control - 4.1 Key facts". NZ Department of Conservation. 
  24. ^ Speechley, Jane (15 November 2007). "1080 is not a humane poison: International journal publishes RSPCA paper". RSPCA. Archived from the original on 2007-11-18. Retrieved 2007-12-17. 
  25. ^ L. E. Twigg and D. R. King, OIKOS 61, 412 (1991)
  26. ^ "Full-on blitz for foxes". The Mercury (Tasmania). 23 September 2011. Retrieved 2011-08-26. 
  27. ^ http://www.kangaroo-protection-coalition.com/wallaby-poison.html
  28. ^ http://www.abc.net.au/worldtoday/content/2005/s1438832.htm
  29. ^ Green, W. (July 2004). "The use of 1080 for pest control" (pdf). The Animal Health Board and The Department of Conservation. Retrieved 2008-12-16. 
  30. ^ "Wildlife Services Factsheet May 2010: The Livestock Protection Collar" (pdf). U.S. Department of Agriculture's (USDA) Animal and Plant Health Inspection Service (APHIS). Retrieved 2010-07-30. "Coyotes are the leading cause of predation losses for sheep and goat producers. ... The LPC is registered by the Environmental Protection Agency (EPA) as a restricted use product." 
  31. ^ Leydet, F. (1988). The coyote: defiant songdog of the West. Norman: University of Oklahoma Press. p. 110. ISBN 0-8061-2123-8. Retrieved 2010-07-30. "So it was not humaneness that convinced PARC that Compound 1080 was the ideal tool for coyote control. Sodium monofluoroacetate had other attractions. It was cheap, and tiny amounts were effective: all you needed was sixteen grams, costing twenty-eight cents, to treat 1000 pounds of horsemeat, or enough, theoretically, to kill 11,428 coyotes at 1.4 ounces of bait meat per lethal dose." 
  32. ^ "Sodium Fluoroacetate: Reregistration Eligibility Decision (RED) Fact Sheet" (pdf). Environmental Protection Agency. Retrieved 2010-07-30. "Sodium fluoroacetate is an acute toxicant predacide which is used against coyotes which prey on sheep and goats. ... Sodium fluoroacetate is a restricted use pesticide which may be used only by trained, certified applicators and which is only registered for use in livestock protection collars. Sodium fluoroacetate will retain the restricted use classification imposed by the Agency in 1978 due to its high acute toxicity and the need for highly specialized applicator training. ... Development and use of sodium fluoroacetate as a predacide and rodenticide in the U.S. began in the 1940s prior to the 1947 enactment of the Federal Insecticide, Fungicide, and Rodenticide Act by which requirements for federal registration of pesticide products were instituted. In 1964 and again in 1971, the use of poisons to control predatory mammals were reviewed by selected committees. In 1972, EPA cancelled all registered predator control uses of sodium fluoroacetate, sodium cyanide, and strychnine. In 1977, the US Department of the Interior (USDI) applied for an Experimental Use Permit (EUP) to investigate the potential risks and benefits associated with the use of sodium fluoroacetate in "toxic collars" which would be placed on the necks of sheep and goats. ... In 1981, EPA was petitioned by the USDI and livestock interests to revisit the 1972 predacide cancellation decision with respect to sodium fluoroacetate. ... In 1985, EPA granted a registration to USDI for a toxic collar product which was transferred in 1986 to the Animal and Plant Health Inspection Service (APHIS) of the US Department of Agriculture (USDA). ... The rodenticide uses of sodium fluoroacetate were cancelled due to lack of supporting data. In 1989, all "special local needs" registrations issued under § 24(c) of FIFRA were cancelled, and all pending applications for Federal registration were denied by August 1990." 
  33. ^ 1080 information - Department of Conservation (retrieved 2011): http://www.doc.govt.nz/conservation/threats-and-impacts/animal-pests/methods-of-control/1080-poison-for-pest-control/#othercountries
  34. ^ Eason, C. T. (2002). Technical Review of Sodium Monofluoroacetate (1080) Toxicology. ISBN 0-478-09346-2. Retrieved 2011-09-30. 
  35. ^ Suren, A.; Lambert, P. (2006). "Do toxic baits containing sodium fluroacetate (1080) affect fish and invertebrate communities when they fall into streams?". New Zealand Journal of Marine and Freshwater Research 40 (4): 531–546. doi:10.1080/00288330.2006.9517443. 
  36. ^ Eason, C. T.; Temple, W. (2002). "Water sampling for sodium fluoroacetate (1080) - how much is enough?". The NZWWA Journal 32 (36). ISBN 0-478-09346-2. Retrieved 2011-09-30. 
  37. ^ unpublished data, Landcare Research New Zealand Ltd
  38. ^ http://www.youtube.com/watch?v=lAXaMFKFw9E
  39. ^ Eason, C. T.; Wright, G. R.; Fitzgerald, H. (1992). "Sodium Monofluoroacetate (1080) Water-Residue Analysis after Large-Scale Possum Control" (pdf). New Zealand Journal of Ecology 16 (1): 47–49. 
  40. ^ "Evaluating the use of 1080 - Predators, poisons and silent forests" (pdf). New Zealand: Parliamentary Commissioner for the Environment. 2011. 
  41. ^ "Tongariro Forest whio". New Zealand: Department of Conservation. 
  42. ^ Innes, J.; Nugent, G.; Prime, K.; Spurr, E. B. (2004). "Responses of kukupa (Hemiphaga novaeseelandiae) and other birds to mammal pest control at Motatau, Northland" (pdf). New Zealand Journal of Ecology 28 (1): 73–81. 
  43. ^ Kiwi: http://www.doc.govt.nz/conservation/native-animals/birds/birds-a-z/kiwi/
  44. ^ MacKay, Scot (27 April 2011). "1080 drop boosts Waitutu kaka: DOC". The Southland Times. Retrieved 12 November 2011. 
  45. ^ Seaton, R.; Holland, J. D.; Minot, E. O.; Springett, B. P. (2009). "Breeding Success of New Zealand Falcons (Falco novaeseelandiae) in a Pine Plantation" (pdf). New Zealand Journal of Ecology 33 (1): 32–39. 
  46. ^ Powlesland, R. G.; Knegtmans, J. W.; Styche, A. (2000). "Mortality of North Island tomtits (Petroica macrocephala toitoi) caused by aerial 1080 possum control operations, 1997-98, Pureora Forest Park" (pdf). New Zealand Journal of Ecology 24 (2): 161–168. 
  47. ^ Schadewinkel, R. B.; Jamieson, I. G. "The effect of aerial application of 1080 cereal baits for possum control on South Island Robin (Petroica australis) in the Silver Peaks, Dunedin" (pdf). New Zealand: TBFree. 
  48. ^ Powlesland, R. G.; Knegtmans, J. W.; Marshall, I. S. J. (1999). "Costs and Benefits of Aerial 1080 Possum Control Operation Using Carrot Baits to North Island Robins (Petroica australis longipes), Pureora Forest Park" (pdf). New Zealand Journal of Ecology 23 (2): 149–159. 
  49. ^ Operation Ark: Three year progress report (2007): http://www.doc.govt.nz/publications/conservation/land-and-freshwater/land/operation-ark/
  50. ^ "Seven keas dead in wake of 1080 work". Otago Daily Times. 12 September 2011. Retrieved 12 November 2011. 
  51. ^ Lead poisoning in kea: http://www.doc.govt.nz/conservation/threats-and-impacts/wildlife-health/nz-wildlife-diseases/#lead
  52. ^ Evaluating the use of 1080 (Parliamentary Commissioner For The Environment, 2011): http://www.pce.parliament.nz/assets/Uploads/PCE-1080.pdf
  53. ^ The Sensitivity of Australian Animals to 1080 Poison VIII.* Amphibians and Reptiles (McIlroy et al. 1985): http://www.publish.csiro.au/paper/WR9850113.htm
  54. ^ McIlroy, J.C. 1992: Secondary poisoning hazards associated with 1080-treated carrot baiting campaigns against rabbits, 1992
  55. ^ Perfect, A. J.; Bell, B. D. (2005). "Assessment of the impact of 1080 on the native frogs Leiopelma archeyi and L. hochstetteri" (pdf). DOC Research & Development Series 209. 
  56. ^ Predation of lizards by feral house cats (Felis catus) and ferrets (Mustela furo) in the tussock grassland of Otago (Middlemiss, A - University of Otago, 1995): http://otago.ourarchive.ac.nz/handle/10523/126
  57. ^ Conserving dryland lizards by reducing predator-mediated apparent competition and direct competition with introduced rabbits (Norbury, G. 2001 - Journal of Applied Ecology 38: 1350-1361): http://www.jstor.org/pss/827304
  58. ^ Possums and possum control; effects on lowland forest ecosystems - Atkinson et al, 1995: http://www.doc.govt.nz/upload/documents/science-and-technical/sfc001.pdf
  59. ^ The use of 1080 for pest control - Comparison of species sensitivity (NZ Department of Conservation website - retrieved August 2011): http://www.doc.govt.nz/publications/conservation/threats-and-impacts/animal-pests/the-use-of-1080-for-pest-control/4-information-about-1080/4_1-key-facts/
  60. ^ Spurr, E. B. (1996). "Impacts of 1080-poisoning for possum control on non-target invertebrates" (pdf). New Zealand: Department of Conservation. 
  61. ^ Booth, L. H.; Wickstrom, M. L. (1999). "The Toxicity of Sodium Monofluoroacetate (1080) to Huneria striata, a New Zealand Native Ant" (pdf). New Zealand Journal of Ecology 23 (2): 161–165. 
  62. ^ Eason, C. T.; Gooneratne, R.; Wright, G.; Pierce, R.; Frampton, C. M. (1993). "The fate of sodium monofluoroacetate (1080) in water, mammals, and invertebrates". Proceedings of 46th New Zealand Plant Protection Society Conference. pp. 297–301. 
  63. ^ 1080 poison benefits snails: http://www.doc.govt.nz/conservation/threats-and-impacts/animal-pests/methods-of-control/1080-poison-for-pest-control/videos-about-1080/1080-poison-helps-native-snails/
  64. ^ Landcare Research website: http://www.landcareresearch.co.nz/education/insects_spiders/
  65. ^ Cowan, P. E.; Moeed, A. (1987). "Invertebrates in the diet of brushtail possums, Trichosurus vulpecula, in lowland podocarp/broadleaf forest, Orongorongo Valley, Wellington, New Zealand". New Zealand Journal of Zoology (Wellington, New Zealand: The Royal Society of New Zealand) 14 (2): 163–177. doi:10.1080/03014223.1987.10422987. ISSN 0301-4223. 
  66. ^ Te Ara Encyclopaedia of New Zealand website: http://www.teara.govt.nz/en/possums/4

Further reading[edit]

External links[edit]