Sodium dithionate

From Wikipedia, the free encyclopedia
  (Redirected from Sodium metabisulfate)
Jump to: navigation, search
Sodium dithionate
Two sodium cations and one dithionate anion
Ball-and-stick model of the component ions
Identifiers
CAS number 7631-94-9 N
PubChem 146045
ChemSpider 128833 YesY
EC number 231-550-1
Jmol-3D images Image 1
Properties
Molecular formula Na2S2O6
Molar mass 206.106 g/mol
Appearance White crystalline powder
Density 2.19 g/cm3
Melting point 52 °C (126 °F; 325 K)
Boiling point 267 °C (513 °F; 540 K) decomposes
Solubility in water 6.27 g/100 mL (0 °C)
15.12 g/100 mL (20 °C)
64.74 g/100 mL (100 °C)
Hazards
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 3: Short exposure could cause serious temporary or residual injury. E.g., chlorine gas Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 N (verify) (what is: YesY/N?)
Infobox references
For the sterilizing agent, see sodium metabisulfite. For the reducing agent, see sodium dithionite.

Sodium dithionate Na2S2O6 is an important compound for inorganic chemistry. It is also known under names disodium dithionate, sodium hyposulfate, and sodium metabisulfate. The sulfur can be considered to be in its +5 oxidation state.

It should not be confused with sodium dithionite, Na2S2O4, which is a very different compound, and is a powerful reducing agent with many uses in chemistry and biochemistry. Confusion between dithionate and dithionite is commonly encountered, even in manufacturers' catalogues.

Preparation[edit]

Sodium dithionate is produced by the oxidation of sodium bisulfite by manganese dioxide:[1]

2 NaHSO3 + MnO2 → Na2S2O6 + MnO + H2O

Alternatively, it can be prepared by the oxidation of sodium sulfite by the silver(I) cation:[1]

Na
2
SO
3
+ 2 Ag+
+ SO
3
Na
2
S
2
O
6
+ 2 Ag

Another method is via oxidation of sodium thiosulfate with chlorine:[citation needed]

3 Cl2 + Na2S2O3·5H2O + 6 NaOH → Na2S2O6 + 6 NaCl + 8 H2O

And another method to produce sodium dithionate is treating sodium tiosulfatewith sodium hypochlorite solution.

Structure[edit]

The dithionate ion represents sulfur that is oxidized relative to elemental sulfur, but not totally oxidized. Sulfur can be reduced to sulfide or totally oxidized to sulfate, with numerous intermediate oxidation states in inorganic moieties, as well as organosulfur compounds. Example inorganic ions include sulfite and thiosulfate.

Sodium dithionate crystallize as orthorhombic crystals of the dihydrate (Na
2
S
2
O
6
). The water of crystallization is lost when heated to 90 °C, and the structure becomes hexagonal.[2]

Large beautiful single crystals of (Na
2
S
2
O
6 .2
H
2
O
) has been grown and studied for pulsed lasing purposes (pico second spectroscopy) with great success by E. Haussühl and cols.[3]

Properties[edit]

Sodium dithionate is a very stable compound which is not oxidized by permanganate, dichromate or bromine. It can be oxidized to sulfate under strongly oxidizing conditions: these include boiling for one hour with 5 M sulfuric acid with an excess of potassium dichromate, or treating with an excess of hydrogen peroxide then boiling with concentrated hydrochloric acid. The Gibbs free energy change for the oxidation is about −300 kJ/mol. In addition, the (S
2
O
6
) anion is not a good reducing group. Therefore, it has been used to form single crystals of large cation complexes in high oxidation states without reduction of the metallic complex.

References[edit]

  1. ^ a b W. G. Palmer (1954). Experimental Inorganic Chemistry. CUP Archive. pp. 361–365. ISBN 0-521-05902-X. 
  2. ^ D. W. Larson; A. B. VanCleave (February 1963). "X-Ray Diffraction Data for Alkali Dithionates". Canadian Journal of Chemistry (The National Research Council of Canada) 41 (2). 
  3. ^ Haussühl, E.; A. A. Kaminskii (2010). Laser Physics 15 (5): 714–727.