Jump to content

Solar eclipse of August 30, 1905

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Certes (talk | contribs) at 17:54, 11 October 2022 (Disambiguated: Tripoli, Libya (via WP:JWB)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Solar eclipse of August 30, 1905
Map
Type of eclipse
NatureTotal
Gamma0.5708
Magnitude1.0477
Maximum eclipse
Duration226 s (3 min 46 s)
Coordinates42°30′N 4°18′W / 42.5°N 4.3°W / 42.5; -4.3
Max. width of band192 km (119 mi)
Times (UTC)
Greatest eclipse13:07:26
References
Saros143 (17 of 72)
Catalog # (SE5000)9293

A total solar eclipse occurred on August 30, 1905. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Canada, Newfoundland Colony (now belonging to Canada), Spain, French Algeria (now Algeria), French Tunisia (now Tunisia), Ottoman Tripolitania (now Libya) include the capital Tripoli, Egypt, Ottoman Empire (the parts now belonging to Saudi Arabia) including Mecca, Emirate of Jabal Shammar (now belonging to Saudi Arabia), Aden Protectorate (now belonging to Yemen), and Muscat and Oman (now Oman).

This eclipse was observed from Alcalà de Xivert in Spain.[1] It was also observed by members of the British Astronomical Association from various locations.[2]

Solar eclipses of 1902–1907

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

The partial solar eclipses on May 7, 1902 and October 31, 1902 occur in the previous lunar year eclipse set, and the partial solar eclipse on July 21, 1906 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1902 to 1906
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
108 April 8, 1902

Partial
1.5024 113 October 1, 1902
118 March 29, 1903

Annular
0.8413 123 September 21, 1903

Total
−0.8967
128 March 17, 1904

Annular
0.1299 133 September 9, 1904

Total
−0.1625
138 March 6, 1905

Annular
−0.5768 143
August 30, 1905

Total
0.5708
148 February 23, 1906

Partial
−1.2479 153 August 20, 1906

Partial
1.3731

Solar 143

This eclipse is a part of Saros series 143, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on March 7, 1617. It contains total eclipses from June 24, 1797 through October 24, 1995; hybrid eclipses from November 3, 2013 through December 6, 2067; and annular eclipses from December 16, 2085 through September 16, 2536. The series ends at member 72 as a partial eclipse on April 23, 2897. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 16 at 3 minutes, 50 seconds on August 19, 1887, and the longest duration of annularity will be produced by member 51 at 4 minutes, 54 seconds on September 6, 2518. All eclipses in this series occur at the Moon’s ascending node of orbit.[4]

Series members 12–33 occur between 1801 and 2200:
12 13 14

July 6, 1815

July 17, 1833

July 28, 1851
15 16 17

August 7, 1869

August 19, 1887

August 30, 1905
18 19 20

September 10, 1923

September 21, 1941

October 2, 1959
21 22 23

October 12, 1977

October 24, 1995

November 3, 2013
24 25 26

November 14, 2031

November 25, 2049

December 6, 2067
27 28 29

December 16, 2085

December 29, 2103

January 8, 2122
30 31 32

January 20, 2140

January 30, 2158

February 10, 2176
33

February 21, 2194

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings. In the 19th century:

  • Solar saros 140: total solar eclipse of October 29, 1818
  • Solar saros 141: annular solar eclipse of October 9, 1847
  • Solar saros 142: total solar eclipse of September 17, 1876

In the 22nd century:

  • Solar saros 150: partial solar eclipse of April 11, 2108
  • Solar saros 151: annular solar eclipse of March 21, 2137
  • Solar saros 152: total solar eclipse of March 2, 2166
  • Solar saros 153: annular solar eclipse of February 10, 2195

Notes

  1. ^ Fabricio Cardenas, Vieux papiers des Pyrénées-Orientales, Eclipse solaire de 1905 à Perpignan, 20 March 2015
  2. ^ British Astronomical Association; Levander, Frederick William (1906). The total solar eclipse 1905 : Reports of observations made by members of the British Astronomical Association of the total solar eclipse of 1905, August 30. University of California Libraries. London : British Astronomical Association.
  3. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved October 6, 2018.
  4. ^ "NASA - Catalog of Solar Eclipses of Saros 143". eclipse.gsfc.nasa.gov.

References