South African Class 7E3, Series 2

From Wikipedia, the free encyclopedia
Jump to: navigation, search
South African Class 7E3, Series 2
SAR Class 7E3 Series 2 E7296.JPG
No. E7296 at Richards Bay, KwaZulu-Natal, 14 August 2007
Type and origin
Power type Electric
Designer Hitachi
Builder Dorbyl
Model Hitachi 7E3
Build date 1984-1985
Total produced 25
UIC classification Co-Co
Gauge 3 ft 6 in (1,067 mm) Cape gauge
Bogies 4.060 m (13 ft 3.8 in) wheelbase
Wheel diameter 1,220 mm (48 in)
Wheelbase 13.46 m (44 ft 1.9 in)
Length 18.43 m (60 ft 5.6 in)
Width 2.906 m (9 ft 6.4 in)
Height 4.18 m (13 ft 8.6 in) pantographs down
Axle load 21,420 kg (21.1 long tons)
Locomotive weight 123,500 kg (121.5 long tons)
Current collection
Traction motors Six HS 1054 GR
Transmission 16/94 gear ratio
Performance figures
Maximum speed 100 km/h (62 mph)
Power output Per motor:
525 kW (704 hp) 1 hour
500 kW (670 hp) continuous
3,150 kW (4,220 hp) 1 hour
3,000 kW (4,000 hp) continuous
Tractive effort 450 kN (100,000 lbf) starting
319 kN (72,000 lbf) 1 hour
300 kN (67,000 lbf) continuous [1]
Locomotive brake Air & Rheostatic [2][3]
Train brakes Air & Vacuum
Operator(s) South African Railways
Transnet Freight Rail
Class Class 7E3 [3]
Power class 25 kV AC
Number in class 24
Number(s) E7277-E7300
Delivered 1984-1985
First run 1984

The South African Class 7E3, Series 2 of 1984 is a South African electric locomotive from the South African Railways era.

Between 1984 and 1985 the South African Railways placed twenty-five Class 7E3, Series 2 electric locomotives with a Co-Co wheel arrangement in mainline service. Circa 2001 one of these dual cab locomotives was rebuilt to a single cab locomotive and reclassified to Class 7E4.[1][3][4]


The 25 kV AC Class 7E3, Series 2 electric locomotive was designed for the South African Railways (SAR) by Hitachi and built in South Africa by Dorbyl, who also supplied the mechanical components.[1][2]

Twenty-five locomotives were delivered by Dorbyl between 1984 and 1985, numbered in the range from E7276 to E7300. Like Union Carriage and Wagon (UCW), Dorbyl did not allocate builder’s numbers to the locomotives it built for the SAR, but used the SAR unit numbers for their record keeping.[1]


Control of traction and rheostatic braking on the Class 7E3 is by stepless solid-state electronics. The electrical equipment was designed for high power factor operation, obtained by the switching in of power-factor correction capacitors.[2]

Unlike the Classes 7E and 7E2 Series 1 and 2 where thyristors are used, these locomotives feature silicon-diode rectifiers.[5]

These dual cab locomotives have a roof access ladder on one side only, just to the right of the cab access door. The roof access ladder end is marked as the number 1 end. Series 1 and Series 2 locomotives are visually indistinguishable from each other, but the two sides of the locomotives are sufficiently different in appearance that a pair of them coupled at the same end appears at first glance to be two different locomotive types. The roof access ladder side is smooth, while the other side has several large grilles.[1]

Modifications and reclassifications[edit]

In the period from the early 1990s until 2007 various modifications to improve downhill braking capacity were done to the Coalink line’s Hitachi-designed locomotives. The first set of upgrades were done on the fifty Class 7E1 locomotives.[3]

Class 7E4[edit]

From 2001 seventeen Class 7E3 locomotives, sixteen Series 1, numbers E7260 to E7275, and one Series 2, number E7276, underwent significant modifications. This included the installation of Hitachi micro-processor controls with improved rheostatic brakes, auxiliary inverters designed and built by Fuji and conversion from double cab to single cab, since the cab space was required for some of the new equipment that was installed. These modified single cab locomotives were reclassified to Class 7E4.[3][4]

Class 7E5[edit]

The conversions to Class 7E4 were costly, however, and it was decided to modify further Class 7E3 locomotives to a lesser extent, gaining almost the same benefits at a lower cost since they remained as double cab locomotives. The first batch to be upgraded in this manner were Series 2 numbers E7286 to E7300, but others followed, in total about fifty locomotives of both series. These were reclassified to Class 7E5, although externally they were still identical to the Class 7E3.[3]

Class 7E6[edit]

Following some systems failures on the upgraded Class 7E5 locomotives, a further variation in the modifications was applied to the remaining Class 7E3 locomotives that had not yet been upgraded, which were then reclassified to Class 7E6. Eventually all the Class 7E5 locomotives were also modified once again to meet the Class 7E6 specifications.[3]

Revert to Class 7E3[edit]

By October 2007 all these locomotives were fully upgraded and standardised in respect of their rheostat flat topping and EPROM software. Since, apart from the single cab Class 7E4 conversions, they were once again all identical, those that had been reclassified to Classes 7E5 and 7E6 reverted to their original Class 7E3 classifications. Although numbers E7277 to E7300 are all officially Class 7E3, Series 2 once again, many of them still bore markings for several years to identify them as either Class 7E5 or Class 7E6. The single cab no. E7276, however, remains classified as Class 7E4.[3][4]


Since 1978, 25 kV AC was introduced on all new mainline electrification projects bar one, the exception being the Orex iron ore line from Sishen to Saldanha, where 50 kV AC is used. The Class 7E3, Series 2 locomotives all serve on the 25 kV Coalink line from Ermelo via Vryheid to the Richards Bay Coal Terminal (RBCT).[2][3]

Liveries illustrated[edit]

The main picture shows no. E7296 in Spoornet orange livery, inscribed 7E6, arriving at the RBCT on 14 August 2007. The difference between the two sides of the locomotive and some other liveries that were applied to the Class 7E3, Series 2 are illustrated below.

See also[edit]


  1. ^ a b c d e South African Railways Index and Diagrams Electric and Diesel Locomotives, 610mm and 1065mm Gauges, Ref LXD 14/1/100/20, 28 January 1975, as amended
  2. ^ a b c d Paxton, Leith; Bourne, David (1985). Locomotives of the South African Railways (1st ed.). Cape Town: Struik. pp. 129–131. ISBN 0869772112. 
  3. ^ a b c d e f g h i Middleton, John N. (2002). Railways of Southern Africa Locomotive Guide - 2002 (as amended by Combined Amendment List 4, January 2009) (2nd, Dec 2002 ed.). Herts, England: Beyer-Garratt Publications. pp. 50, 61. 
  4. ^ a b c Information received from several Transnet employees
  5. ^ Jane's Train Recognition Guide