Split networks

From Wikipedia, the free encyclopedia
Jump to: navigation, search

For a given set of taxa like X, and a set of splits S on X, usually together with a non-negative weighting, which may represent character changes distance, or may also have a more abstract interpretation, if the set of splits S is compatible, then it can be represented by an unrooted phylogenetic tree and each edge in the tree corresponds to exactly one of the splits.[clarification needed] More generally, S can always be represented by a split network,[1] which is an unrooted phylogenetic network with the property that every split s in S is represented by an array of parallel edges in network.

A split network N can be obtained from a number of different types of data:

  • Split networks from distances
  • Split networks from trees
  • Split networks from sequences
  • Split networks from quartets

References[edit]

  1. ^ Bandelt, H-J; Dress, AWM (1992). "A canonical decomposition theory for metrics on a finite set". Adv Math 92: 47–105. 

Further reading[edit]

  • Huson, Daniel H.; Scornavacca, Celine (2011). "A survey of combinatorial methods for phylogenetic networks". Genome Biology and Evolution 3: 23–35. 
  • Huson, Daniel H.; Rupp, Regula; Scornavacca, Celine (2011). Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge University Press. ISBN 978-0521755962.