Spontaneous cerebrospinal fluid leak

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Spontaneous cerebrospinal fluid leak
Classification and external resources
Meninges-en.svg
The spinal meninges of the central nervous system. The dura mater and arachnoid mater hold in CSF and are impacted by SCSFLS.
ICD-10 G96.0, G97.0
ICD-9 339.8, 348.4, 349.0, 792.0
MedlinePlus 001068

Spontaneous cerebrospinal fluid leak syndrome (SCSFLS) is a medical condition in which the cerebrospinal fluid (CSF) held in and around a human brain and spinal cord leaks out of the surrounding protective sac, the dura, for no apparent reason. The dura, a tough, inflexible tissue, is the outermost of the three layers of the meninges, the system of meninges surrounding the brain and spinal cord. (The other two meningeal layers are the pia mater and the arachnoid mater).

A spontaneous cerebrospinal fluid leak is one of several types of cerebrospinal fluid leaks and occurs due to the presence of one or more holes in the dura. A spontaneous CSF leak, as opposed to traumatically caused CSF leaks, arises idiopathically. A loss of CSF greater than its rate of production leads to a decreased volume inside the skull known as intracranial hypotension. A CSF leak is most often characterized by a severe and disabling headache and a spectrum of various symptoms that occur as a result of intracerebral hemorrhage (ICH). These symptoms can include: dizziness, nausea, fatigue, a metallic taste in the mouth (indicative of a cranial leak), myoclonus, tinnitus, tingling in the limbs, and facial weakness among others. A CT scan can identify the site of a cerebrospinal fluid leakage. Once identified, the leak can often be repaired by an epidural blood patch, an injection of the patient's own blood at the site of the leak, fibrin glue injection or surgery.

SCSFLS afflicts 5 out of every 100,000 people. On average, the condition is developed at the age of 42, and women are twice as likely as men to develop the condition. Some people with SCSFLS chronically leak cerebrospinal fluid despite repeated attempts at patching, leading to long-term disability due to pain and nerve damage. SCSFLS was first described by German neurologist Georg Schaltenbrand in 1938 and by American physician Henry Woltman of the Mayo Clinic in the 1950s.

Actor George Clooney suffered from a CSF leak in 2005.[1][2] Due to the intense pain Clooney considered suicide.[3]

Classification[edit]

SCSFLS is classified into two main types, cranial leaks[4] and spinal leaks.[5] Cranial leaks occur in the head. In some cases, CSF can be seen dripping out of the nose,[6][7] or ear.[4] Spinal leaks occur when one or more holes form in the dura along the spinal cord.[5] Both cranial and spinal spontaneous CSF leaks cause neurological symptoms as well as spontaneous intracranial hypotension, diminished volume and pressure of the cranium.[8] While referred to as intracranial hypotension the intracranial pressure may be normal, but low-volume CSF is instead the underlying issue. For this reason SCSFLS is referred to as CSF hypovolemia as opposed to CSF hypotension.[9][10][11][12]

Signs and symptoms[edit]

Symptoms resulting from nerve impact[13]
Nerve Function Symptoms
optic
(2)
optic nerve
crossing
blurred and or
double vision
chorda tympani
(Branch of 7)
taste taste distortion
facial
(7)
facial nerve facial weakness
and numbness
vestibulocochlear
(8)
hearing,
balance
hearing and
balance problems
glossopharyngeal
(9)
taste taste distortion

Most people who develop SCSFLS feel a sudden onset of a severe and acute headache.[12][14] It is a headache usually but not necessarily orthostatic in nature, typically becoming prominent throughout the day, in which usually the pain is worse when the person is vertical and less severe when horizontal.[15] Other symptoms include dizziness and vertigo, facial numbness or weakness, unusually blurry or double vision, neuralgia, fatigue, a metallic taste in the mouth, nausea, or vomiting.[12] Leaking CSF can sometimes be felt or observed as discharge through the nose or ear.[16] Orthostatic headaches can be incapacitating;[17][18] these ailments often become chronic and can be sufficiently disabling to make those afflicted unable to work.[12][18][19] Some patients with CSF leak will develop headaches that begin in the afternoon. This is known as second-half-of-the-day headache. This may be an initial presentation of CSF leak or appear after treatment and likely indicates a slow CSF leak.[20]

Lack of CSF pressure and volume allows the brain to descend through the foramen magnum, or occipital bone, the large opening at the base of the skull. The lower portion of the brain is believed to stretch or impact one or more cranial nerve complexes, thereby causing a variety of sensory symptoms. Nerves that can be affected and their related symptoms are detailed in the table at right.[12][13][19]

Causes[edit]

The two main theories as to the underlying cause of SCSFLS are as a result of a connective tissue disorder or spinal drainage problems.

Connective Tissue Theory[edit]

A spontaneous CSF leak is idiopathic; it can arise spontaneously or from an unknown cause.[19][21] Various scientists and physicians have suggested that this condition may be the result of an underlying connective tissue disorder affecting the spinal dura.[12][13][22][23] It may also run in families and be associated with aortic aneurysms and joint hypermobility.[13][24] Up to two thirds of those afflicted demonstrate some type of generalized connective tissue disorder.[13][23] Marfan syndrome, Ehlers-Danlos syndrome and autosomal dominant polycystic kidney disease are the three most common connective tissue disorders associated with SCSFLS.[13]

Roughly 20% of patients with SCSFLS exhibit features of Marfan syndrome, including tall stature, chest divot (pectus excavatum), joint hypermobility and arched palate. However these patients do not exhibit any other Marfan syndrome presentations.[13]

Spinal Drainage Theory[edit]

Some other studies have proposed that issues with the spinal venous drainage system may cause a CSF leak.[25] According to this theory, dural holes and intracranial hypotension are symptoms caused by low pressure in the epidural space due to outflow to the heart through the inferior vena cava vein.[25]

Other causes[edit]

Patients with a nude (absent) nerve root are at increased risk for developing recurrent CSF leaks.[26] Cranial CSF leaks are as a result of intracranial hypertension in a vast majority of cases. The increased pressure causes a rupture of the cranial dura mater, leading to CSF leak and intracranial hypotension.[27][28] Lumbar disc herniation has been reported to cause CSF leak in at least one case.[29] Degenerative spinal disc diseases cause a disc to pierce the dura mater, leading to a CSF leak.[13]

Another view of the cause of orthostatic headaches proposes a malformed distribution of craniospinal elasticity as a result of the collapse of the lower spine's CSF space resulting in the collapse of the dura sac.[13]

Pathophysiology[edit]

Cerebrospinal fluid is produced by the choroid plexus in the brain and contained by the dura and arachnoid layers of the meninges.[12][22][30] The brain floats in CSF, which also transports nutrients to the brain and spinal cord. As holes form in the spinal dura mater, CSF leaks out into the surrounding space. The CSF is then absorbed into the spinal epidural venous plexus or soft tissues around the spine.[13][31] Due to the sterile conditions of the soft tissues around the spine there is no risk of meningitis.[13]

Diagnosis[edit]

The primary place of first complaint to a physician is a hospital emergency room.[14][32] Up to 94% of those suffering from SCSFLS are initially misdiagnosed. Incorrect diagnoses include migraines, meningitis, and psychiatric disorders. The average time from onset of symptoms until definitive diagnosis is 13 months.[33] A study found a 0% success rate for proper diagnosis in the emergency department.[32]

Diagnosis of CSF leak can be done through various imaging techniques, chemical tests of bodily fluid discharged from a head orifice, or clinical exam. The use of CT, MRI, and assays are the most common types of CSF leak instrumental tests. Many CSF leaks are occult and do not show up on imaging and chemical assays, thus such diagnostic tools are not definitive to rule out CSF leaks. A clinician may often depend upon patient history and exam to diagnose, for example: discharge of excessive amount of clear fluid from the nose upon bending over, the increase in headache following a Valsalva maneuver or the reduction of headache when the patient takes a prone position are positive indicators.

As most candidates for CSF leak do not have access to imaging and laboratory tools (modern medicine), clinical exam is the most often used means to diagnose CSF leaks. Improved patient response to conservative treatment may further define a positive diagnosis. The lack of clinician awareness of the signs -symptoms and ailments- of a CSF leak is the greatest challenge to proper diagnosis and treatment, in particular: the loss of the orthostatic characteristic of headache and that every chronic CSF leaker will have a unique symptom set that as a whole contributes to the underlying condition, and diagnosis of, a CSF leak.

CT[edit]

A typical CT scan machine used in the imaging and diagnosis of spinal fluid leak by using non-ionic contrast

Diagnosis of a cerebrospinal fluid leak is performed through a combination of measurement of the CSF pressure and a computed tomography myelogram (CTM) scan of the spinal column for fluid leaks.[13] The opening fluid pressure in the spinal canal is obtained by performing a lumbar puncture, also known as a spinal tap. Once the pressure is measured, radiopaque contrast material is injected into the spinal fluid. The contrast then diffuses out through the dura sac before leaking through dural holes. This allows for a CTM with fluoroscopy to locate and image any sites of dura rupture via contrast seen outside the dura sac in the imagery.[12][16][22]

MRI[edit]

Magnetic resonance imaging is historically less effective at directly imaging sites of CSF leak. MRI studies may show pachymeningeal enhancement (when the dura mater looks thick and inflamed) and an Arnold-Chiari malformation in many, but not all, cases.[13] An Arnold-Chiari malformation occurs when the brain sags and has a downward displacement due to the decreased volume and buoyancy of cerebrospinal fluid in which the brain floats.[13] MRIs can present as completely normal, however, and are not the study of choice.[13][22] An alternate method of locating the site of a CSF leak is to use heavily T2-weighted MR myelography.[13] This has been effective in identifying the sites of a CSF leak without the need for a CT scan, lumbar puncture, and contrast and at locating fluid collections such as CSF pooling.[34] MRIs done on patients sitting upright demonstrated no difference in MRI results compared to those lying down.[32] The use of intrathecal contrast and MR Myelography is also an alternative method of locating CSF leaks with a very high degree of success.[13]

Assay[edit]

When cranial CSF leak is suspected because of discharge from the nose or ear that is potentially CSF, the fluid can be collected and tested with a beta-2 transferrin assay.[35] This test can positively identify if the fluid is cerebrospinal fluid.[35]

CSF analysis[edit]

Spinal needles used in lumbar puncture and introduction of contrast into the spine

Patients with CSF leak have been noted to have very low or even negative opening pressures. However, patients with confirmed CSF leaks may also demonstrate completely normal opening pressures. In 18–46% of cases, the CSF pressure is measured within the normal range.[13][36][37][38] Analysis of spinal fluid may demonstrate lymphocytic pleocytosis and elevated protein content or xanthochromia. This is hypothesized to be due to increased permeability of dilated meningeal blood vessels and a decrease of CSF flow in the lumbar subarachnoid space.[13]

Clinical presentation[edit]

The diagnostic criteria for SCSFLS is based on the 2004 International Classification of Headache Disorders, 2nd edn (ICHD-II) (Table 1) (50) criteria. However, the presentation of patients with confirmed diagnosis may be very different from that of the clinical diagnostic criteria and cannot be considered authoritative.[13]

Treatment[edit]

Epidural Blood Patch[edit]

The epidural syringe is filled with autologous blood and injected in the epidural space in order to close holes in the dura mater.

The treatment of choice for this condition is the surgical application of epidural blood patches,[17][39][40] which has a 90% success rate in treating dural holes;[19][41] a rate higher than that of a conservative treatment of bed rest and hydration.[42] Through the injection of a person's own blood into the area of the hole in the dura, an epidural blood patch uses blood's clotting factors to clot the sites of holes. The volume of autologous blood and number of patch attempts for patients is highly variable.[17] One-quarter to one-third of SCSFLS patients do not have relief of symptoms from epidural blood patching.[13]

Fibrin glue sealant[edit]

If blood patches alone do not succeed in closing the dural tears, placement of percutaneous fibrin glue can be used in place of blood patching, raising the effectiveness of forming a clot and arresting CSF leakage.[5][13][13][43]

Surgical drain technique[edit]

In extreme cases of intractable CSF leak, a surgical lumbar drain has been used.[44][45][46] This procedure is believed to decrease spinal CSF volume while increasing intracranial CSF pressure and volume.[44] This procedure restores normal intracranial CSF volume and pressure while promoting the healing of dural tears by lowering the pressure and volume in the dura.[44][46] This procedure has led to positive results leading to relief of symptoms for up to one year.[44][45]

Neurosurgical repair[edit]

For patients that do not respond to either epidural blood patching or fibrin glue, neurosurgery is available to directly repair leaking meningeal diverticula. The areas of dura leak can be tied together in a process called ligation[disambiguation needed] and then a metal clip can be placed in order to hold the ligation closed.[13] Alternatively, a small compress called a muscle pledget can be placed over the dura leak and then sealed with gel foam and fibrin glue.[13] Primary suturing is rarely able to repair a CSF leak, and in some patients exploration of the dura may be required to properly locate all sites of CSF leak.[13]

Other treatments[edit]

The use of an abdominal binder has also been employed as a treatment.[13]

Prognosis[edit]

Final outcomes for people with SCSFLS remain poorly studied.[13] Some of those afflicted continue to leak CSF from one or more sites and may suffer from unremitting symptoms for many years.[12][22][47] People with chronic SCSFLS may be disabled and unable to work.[13][18] Recurrent CSF leak at an alternate site after recent repair is common.[48]

Complications[edit]

Several complications can occur as a result of SCSFLS including decreased cranial pressure, brain herniation, infection, blood pressure problems, transient paralysis, and coma. The primary and most serious complication of SCSFLS is spontaneous intracranial hypotension, where pressure in the brain is severely decreased.[12][22][49] This complication leads to the hallmark symptom of severe orthostatic headaches.[13][49]

People with cranial CSF leaks have a higher chance of developing meningitis than those with spinal CSF leaks.[35] In addition, if cranial leaks last more than seven days, the chances of developing meningitis are significantly higher.[35] Spinal CSF leaks do not usually result in meningitis due to the mostly aseptic conditions of the spinal dura.[35] When a CSF leak occurs at the temporal bone surgery becomes necessary in order to prevent infection and repair the leak.[50] Orthostatic hypotension is another complication that occurs due to autonomic dysfunction when blood pressure drops significantly.[47] The autonomic dysfunction is caused by compression of the brainstem, which controls breathing and circulation.[47]

Arnold-Chiari malformation is a complication of spontaneous CSF leak, where brain tissue moves down through the opening at the base of the skull due to low volume and pressure of CSF

An Arnold-Chiari malformation is a downward displacement of lower parts of the brain through the skull opening that occurs due to a lack of CSF volume and pressure. A further, albeit rare, complication of CSF leak is transient quadriplegia due to a sudden and significant loss of CSF. This loss results in hindbrain herniation and causes major compression of the upper cervical spinal cord. The quadriplegia dissipates once the patient lies supine.[51][51] An extremely rare complication of SCSFLS is third nerve palsy, where the ability to move one's eyes becomes difficult and interrupted due to compression of the third cranial nerve.[52] Although other sources consider 3rd nerve palsy a common manifestation of CSF leaks. [53]

There are documented cases of reversible frontotemporal dementia and coma.[54] Coma due to a CSF leak has been successfully treated by using blood patches and/or fibrin glue and placing the patient in the Trendelenburg position.[55] Empty sella syndrome, a boney structure that surround the pituitary gland, occurs in CSF leak patients.[27][56]

Epidemiology[edit]

A 1994 community-based study indicated that two out of every 100,000 people suffered from SCSFLS, while a 2004 emergency room-based study indicated five per 100,000.[13][22] SCSFLS generally affects the young and middle aged;[44] the average age for onset is 42.3 years, but onset can range from ages 22 to 61.[57] In an 11-year study women were found to be twice as likely to be affected as men.[58][59]

Studies have shown that SCSFLS runs in families and it is suspected that genetic similarity in families includes weakness in the dura mater, which leads to SCSFLS.[13][60] Large scale population-based studies have not yet been conducted.[22] While a majority of SCSFLS cases continue to be undiagnosed or misdiagnosed, an actual increase in occurrence is unlikely.[22]

History[edit]

Spontaneous CSF leaks have been described by notable physicians and reported in medical journals dating back to the early 1900s.[61][62] German neurologist Georg Schaltenbrand reported in 1938 and 1953 what he termed "aliquorrhea", a condition marked by very low, unobtainable, or even negative CSF pressures. The symptoms included orthostatic headaches and other features that are now recognized as spontaneous intracranial hypotension. A few decades earlier, the same syndrome had been described in French literature as "hypotension of spinal fluid" and "ventricular collapse". In 1940, Henry Woltman of the Mayo Clinic wrote about "headaches associated with decreased intracranial pressure". The full clinical manifestations of intracranial hypotension and CSF leaks were described in several publications reported between the 1960s and early 1990s.[62] Modern reports of spontaneous CSF leak have been reported to medical journals since the late 1980s.[63]

Research and experimental treatments[edit]

IV Cosyntropin, a corticosteroid that causes the brain to produce additional spinal fluid to replace the volume of the lost CSF and alleviate symptoms, has been used to treat CSF leaks.[64][65]

In two small studies of two patients and another with one patient suffering from recurrent CSF leaks where repeated blood patches failed to form clots and relieve symptoms, the patients received temporary but complete resolution of symptoms with an epidural saline infusion.[66][67] The saline infusion temporarily restores the volume necessary for a patient to avoid SIH until the leak can be repaired properly.[13] Intrathecal saline infusion is used in urgent cases such as intractable pain or decreased consciousness.[13]

The gene TGFBR2 has been implicated in several connective tissue disorders including Marfan syndrome, arterial tortuosity, and thoracic aortic aneurysm. A study of patients with SCSFLS demonstrated no mutations in this gene.[13] Minor features of Marfan syndrome has been found in 20% of CSF leak patients. Abnormal findings of fibrillin-1 has been documented in these CSF-leak patients, but only one patient demonstrated a fibrillin-1 defect consistent with Marfan syndrome.[13][68]

See also[edit]

References[edit]

  1. ^ http://abcnews.go.com/Primetime/Health/story?id=1168227
  2. ^ http://www.dailymail.co.uk/tvshowbiz/article-2059563/George-Clooney-I-considered-suicide-agonising-spinal-injury.html
  3. ^ http://www.today.com/id/45257441
  4. ^ a b Lloyd, K. M.; Delgaudio, J. M.; Hudgins, P. A. (2008). "Imaging of Skull Base Cerebrospinal Fluid Leaks in Adults". Radiology 248 (3): 725–36. doi:10.1148/radiol.2483070362. PMID 18710972.  edit
  5. ^ a b c Gordon, N. (2009). "Spontaneous intracranial hypotension". Developmental Medicine & Child Neurology 51 (12): 932–935. doi:10.1111/j.1469-8749.2009.03514.x. PMID 19909307.  edit
  6. ^ Wise, S. K.; Schlosser, R. J. (2007). "Evaluation of spontaneous nasal cerebrospinal fluid leaks". Current Opinion in Otolaryngology & Head and Neck Surgery 15 (1): 28–34. doi:10.1097/MOO.0b013e328011bc76. PMID 17211180.  edit
  7. ^ Hayek, S. M.; Fattouh, M.; Dews, T.; Kapural, L.; Malak, O.; Mekhail, N. (2003). "Successful treatment of spontaneous cerebrospinal fluid leak headache with fluoroscopically guided epidural blood patch: a report of four cases". Pain medicine (Malden, Mass.) 4 (4): 373–378. doi:10.1111/j.1526-4637.2003.03037.x. PMID 14750917.  edit
  8. ^ Maher, CO; Meyer; Mokri (2000). "Surgical treatment of spontaneous spinal cerebrospinal fluid leaks". Neurosurgical focus 9 (1): e7. doi:10.3171/foc.2000.9.1.7. PMID 16859268.  edit
  9. ^ Greenberg, Mark (2006). Handbook of neurosurgery. New York, NY: Thieme Medical Publishers. p. 178. ISBN 0-86577-909-0. Retrieved 18 December 2009. 
  10. ^ Neil R. Miller; William Fletcher Hoyt (2005). Walsh and Hoyt's clinical neuro-ophthalmology. Lippincott Williams & Wilkins. pp. 1303–. ISBN 978-0-7817-4811-7. Retrieved 8 November 2010. 
  11. ^ Mokri, B. (1999). "Spontaneous cerebrospinal fluid leaks: from intracranial hypotension to cerebrospinal fluid hypovolemia--evolution of a concept". Mayo Clinic proceedings. Mayo Clinic 74 (11): 1113–1123. doi:10.4065/74.11.1113. PMID 10560599.  edit
  12. ^ a b c d e f g h i j Schievink, WI (2000). "Spontaneous spinal cerebrospinal fluid leaks: a review". Neurosurgical focus 9 (1): e8. doi:10.3171/foc.2000.9.1.8. PMID 16859269.  edit
  13. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj Schievink, W. I. (2008). "Spontaneous spinal cerebrospinal fluid leaks". Cephalalgia : an international journal of headache 28 (12): 1345–1356. doi:10.1111/j.1468-2982.2008.01776.x. PMID 19037970.  edit
  14. ^ a b Vaidhyanath, R.; Kenningham, R.; Khan, A.; Messios, N. (2007). "Spontaneous intracranial hypotension: a cause of severe acute headache". Emergency Medicine Journal 24 (10): 739–741. doi:10.1136/emj.2007.048694. PMC 2658456. PMID 17901290.  edit
  15. ^ Schievink, W.; Palestrant, D.; Maya, M.; Rappard, G. (2009). "Spontaneous spinal cerebrospinal fluid leak as a cause of coma after craniotomy for clipping of an unruptured intracranial aneurysm". Journal of neurosurgery 110 (3): 521–524. doi:10.3171/2008.9.JNS08670. PMID 19012477.  edit
  16. ^ a b Hofmann, E.; Behr, R.; Schwager, K. (2009). "Imaging of cerebrospinal fluid leaks". Klinische Neuroradiologie 19 (2): 111–121. doi:10.1007/s00062-009-9008-x. PMID 19636501.  edit
  17. ^ a b c Mehta, B.; Tarshis, J. (2009). "Repeated large-volume epidural blood patches for the treatment of spontaneous intracranial hypotension". Canadian Journal of Anesthesia/Journal canadien d'anesthésie 56 (8): 609–13. doi:10.1007/s12630-009-9121-y. PMID 19495908.  edit
  18. ^ a b c Mea, E.; Chiapparini, L.; Savoiardo, M.; Franzini, A.; Bussone, G.; Leone, M. (2009). "Clinical features and outcomes in spontaneous intracranial hypotension: a survey of 90 consecutive patients". Neurological Sciences 30 (S1): S11–S13. doi:10.1007/s10072-009-0060-8. PMID 19415418.  edit
  19. ^ a b c d Victor, Maurice; Ropper, Allan H.; Adams, Raymond Delacy; Brown, Robert F. (2005). Adams and Victor's principles of neurology. New York: McGraw-Hill Medical Pub. Division. pp. 541–543. ISBN 0-07-141620-X. 
  20. ^ Leep Hunderfund, A. N.; Mokri, B. (2011). "Second-half-of-the-day headache as a manifestation of spontaneous CSF leak". Journal of Neurology 259 (2): 306–10. doi:10.1007/s00415-011-6181-z. PMID 21811806.  edit
  21. ^ Schievink, W. I.; Louy, C. (2007). "Precipitating Factors of Spontaneous Spinal Csf Leaks and Intracranial Hypotension". Neurology 69: 700. doi:10.1212/01.wnl.0000267324.68013.8e.  edit
  22. ^ a b c d e f g h i Schievink, W. I. (2006). "Spontaneous Spinal Cerebrospinal Fluid Leaks and Intracranial Hypotension". Journal of the American Medical Association 295 (19): 2286–96. doi:10.1001/jama.295.19.2286. PMID 16705110.  edit
  23. ^ a b Liu, F. -C.; Fuh, J. -L.; Wang, Y. -F.; Wang, S. -J. (2011). "Connective tissue disorders in patients with spontaneous intracranial hypotension". Cephalalgia 31 (6): 691–695. doi:10.1177/0333102410394676. PMID 21220378.  edit
  24. ^ Mokri, B. (2007). "Familial Occurrence of Spontaneous Spinal CSF Leaks: Underlying Connective Tissue Disorder (CME)". Headache: the Journal of Head and Face Pain 48: 146–149. doi:10.1111/j.1526-4610.2007.00979.x.  edit
  25. ^ a b Franzini, A.; Messina, G.; Nazzi, V.; Mea, E.; Leone, M.; Chiapparini, L.; Broggi, G.; Bussone, G. (2009). "Spontaneous intracranial hypotension syndrome: a novel speculative physiopathological hypothesis and a novel patch method in a series of 28 consecutive patients". Journal of neurosurgery 112 (2): 090710065136044. doi:10.3171/2009.6.JNS09415. PMID 19591547.  edit
  26. ^ Schievink, WI; Jacques, L (2003). "Recurrent spontaneous spinal cerebrospinal fluid leak associated with "nude nerve root" syndrome: case report". Neurosurgery 53 (5): 1216–8; discussion 1218–9. doi:10.1227/01.NEU.0000089483.30857.11. PMID 14580290.  edit
  27. ^ a b Woodworth, B. A.; Palmer, J. N. (2009). "Spontaneous cerebrospinal fluid leaks". Current Opinion in Otolaryngology & Head and Neck Surgery 17 (1): 59–65. doi:10.1097/MOO.0b013e3283200017. PMID 19225307.  edit
  28. ^ Schlosser, RJ; Wilensky, EM; Grady, MS; Bolger, WE (2003). "Elevated intracranial pressures in spontaneous cerebrospinal fluid leaks". American journal of rhinology 17 (4): 191–5. PMID 12962187.  edit
  29. ^ Kim, K. T.; Kim, Y. B. (2010). "Spontaneous Intracranial Hypotension Secondary to Lumbar Disc Herniation". Journal of Korean Neurosurgical Society 47 (1): 48–50. doi:10.3340/jkns.2010.47.1.48. PMC 2817515. PMID 20157378.  edit
  30. ^ Michael Schuenke; Udo Schumacher; Erik Schulte; Edward D. Lamperti, Lawrence M. Ross (2007). Head and neuroanatomy. Thieme. ISBN 978-3-13-142101-2. Retrieved 8 November 2010. 
  31. ^ Inamasu, J.; Guiot, B. (2006). "Intracranial hypotension with spinal pathology". The Spine Journal 6 (5): 591–9. doi:10.1016/j.spinee.2005.12.026. PMID 16934734.  edit
  32. ^ a b c Schievink, W. I.; Maya, M. M.; Moser, F.; Tourje, J.; Torbati, S. (2007). "Frequency of spontaneous intracranial hypotension in the emergency department". The Journal of Headache and Pain 8 (6): 325–328. doi:10.1007/s10194-007-0421-8. PMC 3476164. PMID 18071632.  edit
  33. ^ Schievink, W. I. (2003). "Misdiagnosis of Spontaneous Intracranial Hypotension". Archives of Neurology 60 (12): 1713–8. doi:10.1001/archneur.60.12.1713. PMID 14676045.  edit
  34. ^ Wang, Y. -F.; Lirng, J. -F.; Fuh, J. -L.; Hseu, S. -S.; Wang, S. -J. (2009). "Heavily T2-weighted MR myelography vs CT myelography in spontaneous intracranial hypotension". Neurology 73 (22): 1892–8. doi:10.1212/WNL.0b013e3181c3fd99. PMID 19949036.  edit
  35. ^ a b c d e Abuabara, A (2007). "Cerebrospinal fluid rhinorrhoea: diagnosis and management". Medicina oral, patologia oral y cirugia bucal 12 (5): E397–400. PMID 17767107.  edit
  36. ^ Kelley, G (2004). "CSF hypovolemia vs intracranial hypotension in "spontaneous intracranial hypotension syndrome"". Neurology 62 (8): 1453. doi:10.1212/wnl.62.8.1453. PMID 15111706.  edit
  37. ^ Canas, N; Medeiros, E; Fonseca, AT; Palma-Mira, F (2004). "CSF volume loss in spontaneous intracranial hypotension". Neurology 63 (1): 186–7. doi:10.1212/01.wnl.0000132964.07982.cc. PMID 15249640.  edit
  38. ^ Mark S. Greenberg (2006). Handbook of neurosurgery. Thieme. pp. 178–. ISBN 978-3-13-110886-9. Retrieved 8 November 2010. 
  39. ^ Peng, PW; Farb (2008). "Spontaneous C1-2 CSF leak treated with high cervical epidural blood patch". The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques 35 (1): 102–5. PMID 18380287.  edit
  40. ^ Grimaldi, D.; Mea, E.; Chiapparini, L.; Ciceri, E.; Nappini, S.; Savoiardo, M.; Castelli, M.; Cortelli, P.; Carriero, M. R.; Leone, M.; Bussone, G. (2004). "Spontaneous low cerebrospinal pressure: a mini review". Neurological Sciences 25 (S3): S135–S137. doi:10.1007/s10072-004-0272-x. PMID 15549523.  edit
  41. ^ Kessler, P.; Wulf, H. (2008). "Duraperforation - postpunktioneller Kopfschmerz - Prophylaxe- und Therapiemöglichkeiten". AINS - Anästhesiologie · Intensivmedizin · Notfallmedizin · Schmerztherapie 43 (5): 346. doi:10.1055/s-2008-1079107. PMID 18464211.  edit
  42. ^ Wang, S.; Lirng, J.; Hseu, S.; Chan, K. (2008). "Spontaneous Intracranial Hypotension Treated by Epidural Blood Patches". Acta Anaesthesiologica Taiwanica 46 (3): 129–133. doi:10.1016/S1875-4597(08)60007-7. PMID 18809524.  edit
  43. ^ Schievink, W. I.; Maya, M. M.; Moser, F. M. (2004). "Treatment of spontaneous intracranial hypotension with percutaneous placement of a fibrin sealant". Journal of Neurosurgery 100: 1098. doi:10.3171/jns.2004.100.6.1098.  edit
  44. ^ a b c d e Schievink, W. I. (2009). "A Novel Technique for Treatment of Intractable Spontaneous Intracranial Hypotension: Lumbar Dural Reduction Surgery". Headache: the Journal of Head and Face Pain 49 (7): 1047–1051. doi:10.1111/j.1526-4610.2009.01450.x. PMID 19473279.  edit
  45. ^ a b Kitchel, SH; Eismont, FJ; Green, BA (1989). "Closed subarachnoid drainage for management of cerebrospinal fluid leakage after an operation on the spine". The Journal of bone and joint surgery. American volume 71 (7): 984–7. PMID 2760094.  edit
  46. ^ a b Roosendaal, C. M.; Coppes, M. H.; Vroomen, P. C. A. J. (2009). "The paradox of intracranial hypotension responding well to CSF drainage". European Journal of Neurology 16 (12): e178. doi:10.1111/j.1468-1331.2009.02803.x. PMID 19863649.  edit
  47. ^ a b c Schwedt, TJ; Dodick, DW (2007). "Spontaneous intracranial hypotension". Current pain and headache reports 11 (1): 56–61. doi:10.1007/s11916-007-0023-9. PMID 17214923.  edit
  48. ^ Schievink, W. I.; Maya, M. M.; Riedinger, M. (2003). "Recurrent spontaneous spinal cerebrospinal fluid leaks and intracranial hypotension: a prospective study". Journal of Neurosurgery 99: 840. doi:10.3171/jns.2003.99.5.0840.  edit
  49. ^ a b Mokri, B (2001). "Spontaneous intracranial hypotension". Current pain and headache reports 5 (3): 284–91. doi:10.1007/s11916-001-0045-7. PMID 11309218.  edit
  50. ^ Stenzel, M.; Preuss, S.; Orloff, L.; Jecker, P.; Mann, W. (2005). "Cerebrospinal Fluid Leaks of Temporal Bone Origin: Etiology and Management". ORL; journal for oto-rhino-laryngology and its related specialties 67 (1): 51–5. doi:10.1159/000084306. PMID 15753623.  edit
  51. ^ a b Schievink, W. I.; Maya, M. M. (2006). "Quadriplegia and cerebellar hemorrhage in spontaneous intracranial hypotension". Neurology 66 (11): 1777–8. doi:10.1212/01.wnl.0000218210.83855.40. PMID 16769965.  edit
  52. ^ Alonso Cánovas, A; Martínez San Millán, J; Novillo López, ME; Masjuán Vallejo, J (2008). "Third cranial nerve palsy due to intracranial hypotension syndrome". Neurologia (Barcelona, Spain) 23 (7): 462–5. PMID 18726726.  edit
  53. ^ "Chronic Daily Headache for Clinicians". 
  54. ^ Sayao, AL; Heran, MK; Chapman, K; Redekop, G; Foti, D (2009). "Intracranial hypotension causing reversible frontotemporal dementia and coma". The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques 36 (2): 252–6. PMID 19378725.  edit
  55. ^ Ferrante, E.; Arpino, I.; Citterio, A.; Savino, A. (2009). "Coma resulting from spontaneous intracranial hypotension treated with the epidural blood patch in the Trendelenburg position pre-medicated with acetazolamide". Clinical Neurology and Neurosurgery 111 (8): 699–702. doi:10.1016/j.clineuro.2009.06.001. PMID 19577356.  edit
  56. ^ Schievink, W. I.; Moser, F. G.; Pikul, B. K. (2007). "Reversal of coma with an injection of glue". The Lancet 369: 1402. doi:10.1016/S0140-6736(07)60636-9.  edit
  57. ^ Schievink, W. I.; Morreale, V. M.; Atkinson, J. L. D.; Meyer, F. B.; Piepgras, D. G.; Ebersold, M. J. (1998). "Surgical treatment of spontaneous spinal cerebrospinal fluid leaks". Journal of Neurosurgery 88 (2): 243–246. doi:10.3171/jns.1998.88.2.0243. PMID 9452231.  edit
  58. ^ Ferrante, E.; Wetzl, R.; Savino, A.; Citterio, A.; Protti, A. (2004). "Spontaneous cerebrospinal fluid leak syndrome: report of 18 cases". Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology. 25. Suppl 3 (S3): S293–S295. doi:10.1007/s10072-004-0315-3. PMID 15549566.  edit
  59. ^ Schievink, W.; Maya, M.; Pikul, B.; Louy, C. (2009). "Spontaneous spinal cerebrospinal fluid leaks as the cause of subdural hematomas in elderly patients on anticoagulation". Journal of neurosurgery 112 (2): 295–299. doi:10.3171/2008.10.JNS08428. PMID 19199465.  edit
  60. ^ Larrosa, D; Vázquez, J; Mateo, I; Infante, J (2009). "Familial spontaneous intracranial hypotension". Neurologia (Barcelona, Spain) 24 (7): 485–7. PMID 19921558.  edit
  61. ^ Schaltenbrand, G (1953). "Normal and pathological physiology of the cerebrospinal fluid circulation". Lancet 1 (6765): 805–8. doi:10.1016/S0140-6736(53)91948-5. PMID 13036182.  edit
  62. ^ a b Mokri, B (2000). "Cerebrospinal fluid volume depletion and its emerging clinical/imaging syndromes". Neurosurgical focus 9 (1): e6. doi:10.3171/foc.2000.9.1.6. PMID 16859267.  edit
  63. ^ Rupp, S. M.; Wilson, C. B. (1989). "Treatment of spontaneous cerebrospinal fluid leak with epidural blood patch". Journal of Neurosurgery 70 (5): 808–10. doi:10.3171/jns.1989.70.5.0808. PMID 2709124.  edit
  64. ^ Carter, B.; Pasupuleti, R. (2000). "Use of intravenous cosyntropin in the treatment of postdural puncture headache". Anesthesiology 92 (1): 272–274. doi:10.1097/00000542-200001000-00043. PMID 10638928.  edit
  65. ^ Cánovas, L; Barros, C; Gómez, A; Castro, M; Castro, A (2002). "Use of intravenous tetracosactin in the treatment of postdural puncture headache: our experience in forty cases". Anesthesia and Analgesia 94 (5): 1369. doi:10.1097/00000539-200205000-00069. PMID 11973227.  edit
  66. ^ Rouaud, T.; Lallement, F.; Choui, R.; Madigand, M. (2009). "Traitement de l’hypotension spontanée du liquide cérébrospinal par perfusion épidurale de sérum salé isotonique". Revue Neurologique 165 (2): 201–5. doi:10.1016/j.neurol.2008.05.006. PMID 19010507.  edit
  67. ^ Binder, DK; Dillon, WP; Fishman, RA; Schmidt, MH (2002). "Intrathecal saline infusion in the treatment of obtundation associated with spontaneous intracranial hypotension: technical case report". Neurosurgery 51 (3): 830–6; discussion 836–7. doi:10.1097/00006123-200209000-00045. PMID 12188967.  edit
  68. ^ Schrijver, I.; Schievink, W. I.; Godfrey, M.; Meyer, F. B.; Francke, U. (2002). "Spontaneous spinal cerebrospinal fluid leaks and minor skeletal features of Marfan syndrome: a microfibrillopathy". Journal of Neurosurgery 96 (3): 483–9. doi:10.3171/jns.2002.96.3.0483. PMID 11883832.  edit