Steven Weinberg

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Steven Weinberg
Steven weinberg 2010.jpg
Steven Weinberg at the 2010 Texas Book Festival
Born (1933-05-03) May 3, 1933 (age 81)
New York City, United States
Nationality United States
Fields Theoretical Physics
Institutions University of California, Berkeley
Massachusetts Institute of Technology
Harvard University
University of Texas at Austin
Alma mater Cornell University
Princeton University
Doctoral advisor Sam Treiman
Doctoral students Orlando Alvarez
Claude Bernard
Lay Nam Chang
Bob Holdom
Nicholas C. Tsamis
Ubirajara van Kolck
Rafael Lopez-Mobilia
Fernando Quevedo
Mark G. Raizen
Scott Willenbrock
John Preskill
Known for Electromagnetism and Weak Force unification
Weinberg angle
Weinberg–Witten theorem
Influenced Alan Guth
Notable awards Heineman Prize (1977)
Nobel Prize in Physics (1979)
National Medal of Science (1991)
Spouse Louise Weinberg (m. 1954; 1 child)

Steven Weinberg (born May 3, 1933) is an American theoretical physicist and Nobel laureate in Physics for his contributions with Abdus Salam and Sheldon Glashow to the unification of the weak force and electromagnetic interaction between elementary particles.

He holds the Josey Regental Chair in Science at the University of Texas at Austin, where he is a member of the Physics and Astronomy Departments. His research on elementary particles and cosmology has been honored with numerous prizes and awards, including in 1979 the Nobel Prize in Physics and in 1991 the National Medal of Science. In 2004 he received the Benjamin Franklin Medal of the American Philosophical Society, with a citation that said he is "considered by many to be the preeminent theoretical physicist alive in the world today." He has been elected to the US National Academy of Sciences and Britain's Royal Society, as well as to the American Philosophical Society and the American Academy of Arts and Sciences.

Weinberg's articles on various subjects occasionally appear in The New York Review of Books and other periodicals. He has served as consultant at the U. S. Arms Control and Disarmament Agency, President of the Philosophical Society of Texas, and member of the Board of Editors of Daedalus magazine, the Council of Scholars of the Library of Congress, the JASON group of defense consultants, and many other boards and committees.

Biography[edit]

Steven Weinberg was born in 1933 in New York City, his parents were Jewish immigrants.[1] He graduated from Bronx High School of Science in 1950.[2] He was in the same graduating class as Sheldon Glashow, whose own research, independent of Weinberg's, would result in them (and Abdus Salam) sharing the same 1979 Nobel in Physics (see below).

Weinberg received his bachelor's degree from Cornell University in 1954, living at the Cornell branch of the Telluride Association. He left Cornell and went to the Niels Bohr Institute in Copenhagen where he started his graduate studies and research. After one year, Weinberg returned to Princeton University where he earned his Ph.D. degree in Physics in 1957, studying under Sam Treiman. Weinberg is an atheist.[3]

Academic career[edit]

After completing his Ph.D., Weinberg worked as a post-doctoral researcher at Columbia University (1957–1959) and University of California, Berkeley (1959) and then he was promoted to faculty at Berkeley (1960–1966). He did research in a variety of topics of particle physics, such as the high energy behavior of quantum field theory, symmetry breaking, pion scattering, infrared photons and quantum gravity.[4] It was also during this time that he developed the approach to quantum field theory that is described in the first chapters of his book The Quantum Theory of Fields[5] and started to write his textbook Gravitation and Cosmology. Both textbooks, perhaps especially the second, are among the most influential texts in the scientific community in their subjects.

In 1966, Weinberg left Berkeley and accepted a lecturer position at Harvard. In 1967 he was a visiting professor at MIT. It was in that year at MIT that Weinberg proposed his model of unification of electromagnetism and of nuclear weak forces (such as those involved in beta-decay and kaon-decay),[6] with the masses of the force-carriers of the weak part of the interaction being explained by spontaneous symmetry breaking. One of its fundamental aspects was the prediction of the existence of the Higgs boson. Weinberg's model, now known as the electroweak unification theory, had the same symmetry structure as that proposed by Glashow in 1961: hence both models included the then-unknown weak interaction mechanism between leptons, known as neutral current and mediated by the Z boson. The 1973 experimental discovery of weak neutral currents[7] (mediated by this Z boson) was one verification of the electroweak unification. The paper by Weinberg in which he presented this theory was one of the most cited theoretical works ever in high energy physics as of 2009.[8]

After his 1967 seminal work on the unification of weak and electromagnetic interactions, Steven Weinberg continued his work in many aspects of particle physics, quantum field theory, gravity, supersymmetry, superstrings and cosmology, as well as a theory called Technicolor.

In the years after 1967, the full Standard Model of elementary particle theory was developed through the work of many contributors. In it, the weak and electromagnetic interactions already unified by the work of Weinberg, Abdus Salam and Sheldon Glashow, are made consistent with a theory of the strong interactions between quarks, in one overarching theory. In 1973 Weinberg proposed a modification of the Standard Model which did not contain that model's fundamental Higgs boson.

Weinberg became Higgins Professor of Physics at Harvard University in 1973.

In 1979 he pioneered the modern view on the renormalization aspect of quantum field theory that considers all quantum field theories as effective field theories and changed the viewpoint of previous work (including his own in his 1967 paper) that a sensible quantum field theory must be renormalizable.[9] This approach allowed the development of effective theory of quantum gravity,[10] low energy QCD, heavy quark effective field theory and other developments, and it is a topic of considerable interest in current research.

In 1979, some six years after the experimental discovery of the neutral currents — i.e. the discovery of the inferred existence of the Z boson — but following the 1978 experimental discovery of the theory's predicted amount of parity violation due to Z bosons' mixing with electromagnetic interactions, Weinberg was awarded the Nobel Prize in Physics, together with Sheldon Glashow, and Abdus Salam who had independently proposed a theory of electroweak unification based on spontaneous symmetry breaking.

In 1982 Weinberg moved to the University of Texas at Austin as the Jack S. Josey-Welch Foundation Regents Chair in Science and founded the Theory Group of the Physics Department.

There is current (2008) interest in Weinberg's 1976 proposal of the existence of new strong interactions[11] – a proposal dubbed "Technicolor" by Leonard Susskind – because of its chance of being observed in the LHC as an explanation of the hierarchy problem.

Steven Weinberg is frequently among the top scientists with highest research effect indices, such as the h-index and the creativity index.[12]

Other intellectual contributions[edit]

Besides his scientific research, Steven Weinberg has been a prominent public spokesman for science, testifying before Congress in support of the Superconducting Super Collider, writing articles for the New York Review of Books,[13] and giving various lectures on the larger meaning of science. His books on science written for the public combine the typical scientific popularization with what is traditionally considered history and philosophy of science and atheism.

Weinberg was a major participant in what is known as the Science Wars, standing with Paul R. Gross, Norman Levitt, Alan Sokal, Lewis Wolpert, and Richard Dawkins, on the side arguing for the hard realism of science and scientific knowledge and against the constructionism proposed by such social scientists as Stanley Aronowitz, Barry Barnes, David Bloor, David Edge, Harry Collins, Steve Fuller, and Bruno Latour.

Political ideas[edit]

Weinberg is also known for his support of Israel. He wrote an essay titled "Zionism and Its Cultural Adversaries" to explain his views on the issue.

Weinberg has canceled trips to universities in the United Kingdom because of British boycotts directed towards Israel. He has explained:

"Given the history of the attacks on Israel and the oppressiveness and aggressiveness of other countries in the Middle East and elsewhere, boycotting Israel indicated a moral blindness for which it is hard to find any explanation other than antisemitism."[14]

Personal[edit]

He is married to Louise Weinberg and has one daughter, Elizabeth.

Religion[edit]

His views on religion were expressed in a speech from 1999 in Washington, D.C.:

"'Religion is an insult to human dignity. With or without it you would have good people doing good things and evil people doing evil things. But for good people to do evil things, that takes religion."[15]

He modified his comment in a later article derived from these talks:

"Frederick Douglass told in his Narrative how his condition as a slave became worse when his master underwent a religious conversion that allowed him to justify slavery as the punishment of the children of Ham. Mark Twain described his mother as a genuinely good person, whose soft heart pitied even Satan, but who had no doubt about the legitimacy of slavery, because in years of living in antebellum Missouri she had never heard any sermon opposing slavery, but only countless sermons preaching that slavery was God's will. With or without religion, good people can behave well and bad people can do evil; but for good people to do evil — that takes religion."[15]

He has also said:

"The more the universe seems comprehensible, the more it (also) seems pointless."[16][17]

He attended and was a speaker at the Beyond Belief symposium in November 2006.

Honors and awards[edit]

Queen Beatrix meets Nobel laureates in 1983, Weinberg is next to the queen

The honors and awards that Professor Weinberg received include:

Selected publications[edit]

Bibliography: books authored / coauthored[edit]

Scholarly articles[edit]

Popular articles[edit]

  • A Designer Universe?, a refutation of attacks on the theories of evolution and cosmology (e.g., those conducted under the rubric of intelligent design) is based on a talk given in April 1999 at the Conference on Cosmic Design of the American Association for the Advancement of Science in Washington, D.C. This and other works express Weinberg's strongly held position that scientists should be less passive in defending science against anti-science religiosity.
  • Beautiful Theories, an article reprinted from Dreams of a Final Theory by Steven Weinberg in 1992 which focuses on the nature of beauty in physical theories.
  • The Crisis of Big Science, May 10, 2012, New York Review of Books. Weinberg places the cancellation of the Superconducting Super Collider in the context of a bigger national and global socio-economic crisis, including a general crisis in funding for science research and for the provision of adequate education, healthcare, transportation and communication infrastructure, and criminal justice and law enforcement.

References and notes[edit]

  1. ^ http://www.infogeist.dk/html/egaagymnasium/infogeist-eg12i-fy/eg11iphysicsc/topic_1-8.html
  2. ^ Autobiography of Steven Weinberg
  3. ^ Weinberg, Steven (2008-09-25). "Without God." nybooks.com
  4. ^ A partial list of this work is: Weinberg, S. (1960). "High-Energy Behavior in Quantum Field Theory". Phys. Rev. 118 (3): 838–849. Bibcode:1960PhRv..118..838W. doi:10.1103/PhysRev.118.838. ; Weinberg, S.; Salam, Abdus; Weinberg, Steven (1962). "Broken Symmetries". Phys. Rev. 127 (3): 965–970. Bibcode:1962PhRv..127..965G. doi:10.1103/PhysRev.127.965. ; Weinberg, S. (1966). "Pion Scattering Lengths". Phys. Rev. Lett. 17 (11): 616–621. Bibcode:1966PhRvL..17..616W. doi:10.1103/PhysRevLett.17.616. ; Weinberg, S. (1965). "Infrared Photons and Gravitons". Phys. Rev. 140 (2B): B516–B524. Bibcode:1965PhRv..140..516W. doi:10.1103/PhysRev.140.B516. 
  5. ^ Weinberg, S. (1964). "Feynman Rules for Any spin". Phys. Rev. 133 (5B): B1318–B1332. Bibcode:1964PhRv..133.1318W. doi:10.1103/PhysRev.133.B1318. ; Weinberg, S. (1964). "Feynman Rules for Any spin. II. Massless Particles". Phys. Rev. 134 (4B): B882–B896. Bibcode:1964PhRv..134..882W. doi:10.1103/PhysRev.134.B882. ; Weinberg, S. (1969). "Feynman Rules for Any spin. III". Phys. Rev. 181 (5): 1893–1899. Bibcode:1969PhRv..181.1893W. doi:10.1103/PhysRev.181.1893. 
  6. ^ Weinberg, S. (1967). "A Model of Leptons". Phys. Rev. Lett. 19 (21): 1264–1266. Bibcode:1967PhRvL..19.1264W. doi:10.1103/PhysRevLett.19.1264. 
  7. ^ Haidt, D. (2004). "The discovery of the weak neutral currents". CERN Courier. [1]
  8. ^ SPIRES: Top Cited Articles of All Time (2009 edition)
  9. ^ Weinberg, S. (1979). "Phenomenological Lagrangians". Physica 96: 327. Bibcode:1979PhyA...96..327W. doi:10.1016/0378-4371(79)90223-1. 
  10. ^ Donoghue, J. F. (1994). "General relativity as an effective field theory: The leading quantum corrections". Phys. Rev. D 50 (6): 3874. arXiv:gr-qc/9405057. Bibcode:1994PhRvD..50.3874D. doi:10.1103/PhysRevD.50.3874. 
  11. ^ Weinberg, S. (1976). "Implications of dynamical symmetry breaking". Phys. Rev. D 13 (4): 974–996. Bibcode:1976PhRvD..13..974W. doi:10.1103/PhysRevD.13.974. 
  12. ^ In 2006 Weinberg had the second highest creativity index among physicists World's most creative physicist revealed. physicsworld.com (2006-06-17).
  13. ^ Articles by Steven Weinberg. New York Review of Books. Nybooks.com. Retrieved on 2012-07-27.
  14. ^ "Nobel laureate cancels London trip due to anti-Semitism". YNet News Jewish Daily. May 24, 2007. Retrieved 2007-06-01. 
  15. ^ a b Steven Weinberg. "A Designer Universe?". Retrieved 2008-07-14. "A version of the original quote from address at the Conference on Cosmic Design, American Association for the Advancement of Science, Washington, D.C. in April 1999" 
  16. ^ The first three minutes, Basic Books, New York 1977, p. 154
  17. ^ Dreams of a Final Theory: The Search for the Fundamental Laws of Nature 1993, ISBN 0-09-922391-0
  18. ^ "Benjamin Franklin Medal for Distinguished Achievement in the Sciences Recipients". American Philosophical Society. Retrieved November 26, 2011. 
  19. ^ Sethi, Savdeep (2002). "Review: The quantum theory of fields. III Supersymmetry, by Steven Weinberg". Bull. Amer. Math. Soc. (N.S.) 39 (3): 433–439. doi:10.1090/s0273-0979-02-00944-8. 

External links[edit]