Stuart Newman

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Stuart Alan Newman (born April 4, 1945 in New York City) is a professor of cell biology and anatomy at New York Medical College in Valhalla, NY, United States. His research centers around three program areas: cellular and molecular mechanisms of vertebrate limb development, physical mechanisms of morphogenesis, and mechanisms of morphological evolution. He also writes about social and cultural aspects of biological research and technology.[1]

Newman received an A.B. from Columbia University in 1965, and a Ph.D. in chemical physics from the University of Chicago in 1970, where he worked with the theoretical chemist, Stuart A. Rice. He was a postdoctoral fellow in the Department of Theoretical Biology, University of Chicago and the School of Biological Sciences, University of Sussex, UK, and before joining New York Medical College was an instructor in anatomy at the University of Pennsylvania and an assistant professor of biological sciences at the State University of New York at Albany.

He has been a visiting professor at the Pasteur Institute, Paris, the Commissariat à l'Energie Atomique-Saclay, the Indian Institute of Science, Bangalore, the University of Tokyo, Komaba, and was a Fogarty Senior International Fellow at Monash University, Australia. He is a member of the External Faculty of the Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria, and of the editorial boards of the Journal of Biosciences (Bangalore) and Biological Theory (Klosterneuburg). He was a founding member of the Council for Responsible Genetics, Cambridge, MA and is a director of the Indigenous Peoples Council on Biocolonialism, Nixon, NV.

Newman's work in developmental biology includes a proposed mechanism for patterning of the vertebrate limb skeleton based on the self-organization of embryonic tissues.[2][3][4] He has also characterized a biophysical effect in extracellular matrices populated with cells or nonliving particles, "matrix-driven translocation," that provides a physical model for morphogenesis of mesenchymal tissues.[5] He is co-author, with the physicist Gabor Forgacs, of the textbook Biological Physics of the Developing Embryo (Cambridge University Press, 2005).

His work in evolutionary biology includes a theory for the origination of the animal phyla. This is proposed to have been driven by new physical morphogenetic and patterning effects set into motion when the products of the ancient developmental toolkit genes first came to operate on the multicellular scale in the late Precambrian-early Cambrian. The resulting forms were then "locked in" by stabilizing selection.[6][7][8]

With the evolutionary biologist Gerd B. Müller, Newman edited Origination of Organismal Form (MIT Press, 2003). This book on evolutionary developmental biology is a collection of papers by various researchers on generative mechanisms that were plausibly involved in the origination of disparate body forms during the Ediacaran and early Cambrian periods. Particular attention is given to epigenetic factors, such as physical determinants and environmental parameters, that may have led to the rapid emergence of body plans and organ forms during a period when multicellular organisms had relatively plastic morphologies.[9]

Newman has advanced a novel scenario for the origin of birds, the Thermogenic Muscle Hypothesis. Characteristic anatomical specializations of birds, e.g., bipedality, the capacity for flight, are proposed to be secondary to the hyperplasia of thigh and breast skeletal muscles that arose in compensation for the loss of several genes in saurian ancestors.[10][11]

Newman has been an outspoken critic of proposed uses of developmental biology to modify human species identity, including cloning and germline genetic manipulation.[12] In 1997, in order to encourage public discussion of emerging technologies along these lines, he applied for a U.S. patent on a human-nonhuman chimera, a composite organism arising from a mixture of embryonic cells of two or more species.[13][14] Although the patent was ultimately denied,[15] it raised Constitutional and moral questions and was the subject of numerous articles in the legal and philosophical literature. Newman's patent application has been credited with inspiring the provision in the Leahy-Smith America Invents Act of 2011 that "no patent may issue on a claim directed to or encompassing a human organism."[16]

See also[edit]

References[edit]

  1. ^ Chuong C-M (2009). "Limb pattern, physical mechanisms and morphological evolution - an interview with Stuart A. Newman". Int J Dev Biol 53 (5-6): 663–671. doi:10.1387/ijdb.072553cc. 
  2. ^ Newman SA, Frisch HL (1979). "Dynamics of skeletal pattern formation in developing chick limb". Science 205 (4407): 662–668. doi:10.1126/science.462174. PMID 462174. 
  3. ^ Zhu J, Zhang YT, Alber MS, Newman SA (2010). "Bare bones pattern formation: a core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution". PLoS ONE 5 (5): e:10892. doi:10.1371/journal.pone.0010892. PMC 2878345. PMID 20531940. 
  4. ^ Sheth R, Marcon L, Bastida MF, Junco M, Quintana L, Dahn R, Kmita M, Sharpe J, Ros MA (2012). "Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism". Science 338 (6113): 1476–1480. doi:10.1126/science.1226804. PMID 23239739. 
  5. ^ Newman SA, Frenz DA, Tomasek JJ, Rabuzzi DD (1985). "Matrix-driven translocation of cells and nonliving particles". Science 228 (4701): 885–889. doi:10.1126/science.4001925. PMID 4001925. 
  6. ^ Newman SA, Forgacs G, Müller GB (2006). "Before programs: the physical origination of multicellular forms". Int J Dev Biol 50 (2-3): 289–299. doi:10.1387/ijdb.052049sn. PMID 16479496. 
  7. ^ Newman SA, Bhat R (2009). "Dynamical patterning modules: a 'pattern language' for development and evolution of multicellular form". Int J Dev Biol 53 (5-6): 693–675. doi:10.1387/ijdb.072481sn. PMID 19378259. 
  8. ^ Newman SA (2012). "Physico-genetic determinants in the evolution of development". Science 338 (6104): 217–219. doi:10.1126/science.1222003. PMID 23066074. 
  9. ^ Newman SA, Müller GB (2000). "Epigenetic mechanisms of character origination". J Exp Zool B Mol Develop Evol 288 (4): 304–317. doi:10.1002/1097-010X(20001215)288:4<304::AID-JEZ3>3.0.CO;2-G. 
  10. ^ Newman SA (2011). "Thermogenesis, muscle hyperplasia, and the origin of birds". BioEssays 33 (9): 653–656. doi:10.1002/bies.201100061. PMID 21695679. 
  11. ^ Newman SA, Mezentseva NV, Badyaev AV (2013). "Gene loss, thermogenesis, and the origin of birds". Ann NY Acad Sci 1289 (1): 36–47. doi:10.1111/nyas.12090. PMID 23550607. 
  12. ^ Newman, Stuart A. (2003). "Averting the clone age: prospects and perils of human developmental manipulation" (PDF). J. Contemp. Health Law & Policy 19: 431-463. Retrieved 2008-09-17. 
  13. ^ U.S. patent application no. 08/933,564: “Chimeric Embryos and Animals Containing Human Cells.”
  14. ^ Dowie, Mark (January–February 2004). "Gods and monsters". Mother Jones. Retrieved July 4, 2011. 
  15. ^ Weiss, Rick (February 13, 2005). "U.S. denies patent for a too-human hybrid". Washington Post. Retrieved July 4, 2011. 
  16. ^ Heled, Yaniv (2014). "On patenting human organisms or how the abortion wars feed into the ownership fallacy". Cardozo Law Review 36: 241-298. 

External links[edit]