Sunrise (telescope)

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Sunrise Balloon-Borne Solar Observatory
Operator Max Planck Institute for Solar System Research (MPS)
Major contractors Max Planck Institute for Solar System Research
Kiepenheuer Institute for Solar Physics
High Altitude Observatory
Lockheed Martin Solar and Astrophysics Laboratory
Instituto de Astrofísica de Canarias
Instituto Nacional de Técnica Aeroespacial
Instituto de Astrofísica de Andalucía
Grupo de Astronomía y Ciencias del Espacio
Mission type Balloon-borne telescope
Launch date 8 June 2009 and 12 June 2013
Carrier rocket Balloon
Launch site Esrange Space Center
Kiruna, Sweden
Mission duration 6 days (2009), 5 days (2013)
Landing 14 June 2009 and 17 June 2013
Landing site Nunavut, Canada
Mass 2 tons
Power 1.5 kW
Main instruments SuFI (UV Filtergraph), IMaX (Imaging Magnetograph), SUPOS (Polarimetric Spectrograph, not in 2009)
Spatial resolution 0.13-0.15 arcsec
Spectral band 225, 280, 300, 313, 388 nm (SuFI), 525.06 nm (IMaX), 854, 853.8 nm (SUPOS)
References: [1][2]

The Sunrise balloon-borne solar observatory consists of a 1m aperture Gregory telescope, a UV filter imager, an imaging vector polarimeter, an image stabilization system and further infrastructure. The first science flight of Sunrise yielded high-quality data that reveal the structure, dynamics and evolution of solar convection, oscillations and magnetic fields at a resolution of around 100 km in the quiet Sun.[3]

The strong absorption of UV radiation by the Earth's atmosphere makes it challenging to carry out ground-based observations at these wavelengths. A balloon mission reaching altitudes of above 30 km benefits from a reduction of UV absorption by 99%, making engineering solutions for the telescope easier. The launch site was in the arctic region to make uninterrupted observation of the Sun over several days possible. The telescope has a 1 metre primary mirror that directs the 1 kW of solar radiation to the first focal point where 99% of the radiation is reflected out of the telescope, the remaining light is transferred into several instruments.[4]

The one metre diameter primary mirror is made from a glass ceramic zerodur,[5] it is the central part of the gondola of nearly 2 tons. Solar panels of 1.5 kW output power are used to power the onboard equipment and a hard disk array of 2 x 2.4 Terabyte is used to store the data during flight.[4][6]


  • CWS, Correlating Wavefront Sensor is a CCD camera with 1 kHz read-outs responsible generate the images necessary for image stabilization and proper alignment.[4]
  • SUFI, Sunrise Filter Imager observes the sun in five distinct wavelengths 214, 300, 312, 388 and 397 nm, on a 2048 x 2048 pixel CCD, through a filter wheele.[4]
  • IMaX, Imaging Magnetograph eXperiment observes the Zeeman splitting of the iron line (FeI) around 525 nm. The observed field of view is 50 x 50 arcseconds.[4]


  1. Sunrise's first flight was launched at 8:05 8 June 2009 local time from Esrange, near Kiruna, Sweden[7] and it landed 1:45 14 June 2009 local time on Somerset Island, Nunavut, northern Canada after a flight duration nearly six days.[8][9]
  2. Sunrise's second flight was launched at 7:38 (5:38 UTC) on 12 June 2013 from Esrange, near Kiruna, Sweden,[10][11] and it landed afternoon 17 June 2013 on Boothia peninsula, Nunavut, northern Canada after a flight duration of over 5 days.

See also[edit]


  1. ^ "Sunrise - A balloon-borne solar telescope". MPS. 
  2. ^ "Brief instrument overview" (PDF). Sunrise consortium. Retrieved 1 February 2014. 
  3. ^ Sami Solanki. "First results from the Sunrise mission" (PDF). Astronomical Society of the Pacific. 
  4. ^ a b c d e Barthol, P; Gandorfer, A; Solanki, S; Knolker, M; Pillet, V; Schmidt, W; Title, A (2008). "SUNRISE: High resolution UV/VIS observations of the sun from the stratosphere" (PDF). Advances in Space Research 42 (1): 70–77. Bibcode:2008AdSpR..42...70T. doi:10.1016/j.asr.2007.09.024. 
  5. ^ Berkefeld, T.; Schmidt, W.; Soltau, D.; Bell, A.; Doerr, H. P.; Feger, B.; Friedlein, R.; Gerber, K.; Heidecke, F.; Kentischer, T.; Lühe, O.; Sigwarth, M.; Wälde, E.; Barthol, P.; Deutsch, W.; Gandorfer, A.; Germerott, D.; Grauf, B.; Meller, R.; Álvarez-Herrero, A.; Knölker, M.; Martínez Pillet, V.; Solanki, S. K.; Title, A. M. (2010). "The Wave-Front Correction System for the Sunrise Balloon-Borne Solar Observatory". Solar Physics 268: 103. arXiv:1009.3196. Bibcode:2011SoPh..268..103B. doi:10.1007/s11207-010-9676-3. 
  6. ^ Schmidt, W.; Solanki, S.K.; Barthol, P.; Berkefeld, T.; Gandorfer, A.; Knölker, M.; Martínez Pillet, V.; Schüssler, M.; Title, A. (2010). "SUNRISE - Impressions from a successful science flight". Astronomische Nachrichten 331 (6): 601. Bibcode:2010AN....331..601S. doi:10.1002/asna.201011383. 
  7. ^ "Giant SUNRISE Telescope Successfully Launched". Spaceref. 8 June 2009. Retrieved 1 February 2014. The giant telescope SUNRISE was launched from Esrange Space Center in northern Sweden. At 08.05 (local time) this morning, the largest balloon born telescope ever took off from Swedish Space Corporation's (SSC) launch facility at Esrange Space Center in northern Sweden. 
  8. ^ "Deutsche Forscher starten Sonnenteleskop "Sunrise"" (in German). Spiegelonline. Retrieved 2009-06-08. 
  9. ^ "Sunrise Science-Blog". MPS. 
  10. ^ "Esrange website". 
  11. ^ "SUNRISE, successfully lifted off on June 12". SSC group. Retrieved 1 February 2014. SUNRISE was successfully launched from Esrange Space Center on June 12, 2013 at 05.38 UTC. 

External links[edit]