TAF9

From Wikipedia, the free encyclopedia
Jump to: navigation, search
TAF9 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 32kDa
Protein TAF9 PDB 1rkb.png
PDB rendering based on 1rkb.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols TAF9 ; MGC:5067; STAF31/32; TAF2G; TAFII-31; TAFII-32; TAFII31; TAFII32; TAFIID32
External IDs OMIM600822 MGI1888697 HomoloGene39986 GeneCards: TAF9 Gene
EC number 2.7.4.3
RNA expression pattern
PBB GE TAF9 203893 at tn.png
PBB GE TAF9 202168 at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 6880 108143
Ensembl ENSG00000085231 ENSMUSG00000052293
UniProt Q16594 Q8VI33
RefSeq (mRNA) NM_001015892 NM_001015889
RefSeq (protein) NP_001015892 NP_001015889
Location (UCSC) Chr 5:
68.65 – 68.67 Mb
Chr 13:
100.65 – 100.66 Mb
PubMed search [1] [2]

TAF9 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 32kDa, also known as TAF9, is a protein that in humans is encoded by the TAF9 gene.[1][2]

Function[edit]

Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides. The protein that coordinates these activities is transcription factor IID (TFIID), which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes one of the smaller subunits of TFIID that binds to the basal transcription factor GTF2B as well as to several transcriptional activators such as p53 and VP16. A similar but distinct gene (TAF9B) has been found on the X chromosome and a pseudogene has been identified on chromosome 19. Alternative splicing results in multiple transcript variants encoding different isoforms.[1]

Structure[edit]

The 17-amino-acid-long trans-activating domains (TAD) of several transcription factors were reported to bind directly to TAF9: p53, VP16, HSF1, NF-IL6, NFAT1, NF-κB, and ALL1/MLL1.[3] Inside of these 17 amino acids, a unique Nine-amino-acid transactivation domain (9aaTAD) was identified for each reported transcription factor.[4] 9aaTAD is a novel domain common to a large superfamily of eukaryotic transcription factors represented by Gal4, Oaf1, Leu3, Rtg3, Pho4, Gln4, Gcn4 in yeast and by p53, NFAT, NF-κB and VP16 in mammals.[5] TAF9 is supposed to be a universal transactivation cofactor for 9aaTAD transcription factors.[4]

Interactions[edit]

TAF9 has been shown to interact with GCN5L2,[6] TAF6L,[6] TADA3L,[6] SF3B3,[6] Myc,[7] SUPT7L,[6] Transformation/transcription domain-associated protein,[6] TATA binding protein,[6][8] TAF5L,[6] Transcription initiation protein SPT3 homolog,[6] TAF5,[6][9] TAF12[6] and TAF10.[6]

References[edit]

  1. ^ a b "Entrez Gene: TAF9 TAF9 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 32kDa". 
  2. ^ Evans SC, Foster CJ, El-Naggar AK, Lozano G (April 1999). "Mapping and mutational analysis of the human TAF2G gene encoding a p53 cofactor". Genomics 57 (1): 182–3. doi:10.1006/geno.1999.5745. PMID 10191103. 
  3. ^ Uesugi M, Nyanguile O, Lu H, Levine AJ, Verdine GL (August 1997). "Induced alpha helix in the VP16 activation domain upon binding to a human TAF". Science 277 (5330): 1310–3. doi:10.1126/science.277.5330.1310. PMID 9271577. Uesugi M, Verdine GL (December 1999). "The alpha-helical FXXPhiPhi motif in p53: TAF interaction and discrimination by MDM2". Proc. Natl. Acad. Sci. U.S.A. 96 (26): 14801–6. doi:10.1073/pnas.96.26.14801. PMC 24728. PMID 10611293. Choi Y, Asada S, Uesugi M (May 2000). "Divergent hTAFII31-binding motifs hidden in activation domains". J. Biol. Chem. 275 (21): 15912–6. doi:10.1074/jbc.275.21.15912. PMID 10821850. Venot C, Maratrat M, Sierra V, Conseiller E, Debussche L (April 1999). "Definition of a p53 transactivation function-deficient mutant and characterization of two independent p53 transactivation subdomains". Oncogene 18 (14): 2405–10. doi:10.1038/sj.onc.1202539. PMID 10327062. Lin J, Chen J, Elenbaas B, Levine AJ (May 1994). "Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein". Genes Dev. 8 (10): 1235–46. doi:10.1101/gad.8.10.1235. PMID 7926727. 
  4. ^ a b Piskacek S, Gregor M, Nemethova M, Grabner M, Kovarik P, Piskacek M (June 2007). "Nine-amino-acid transactivation domain: establishment and prediction utilities". Genomics 89 (6): 756–68. doi:10.1016/j.ygeno.2007.02.003. PMID 17467953. 
  5. ^ The prediction for 9aa TADs (for both acidic and hydrophilic transactivation domains) is available online from National EMBnet-Node Austria ("9aaTAD Prediction Webtool". EMBnet AUSTRIA. Retrieved 2009-01-10. )
  6. ^ a b c d e f g h i j k l Martinez, E; Palhan V B; Tjernberg A; Lymar E S; Gamper A M; Kundu T K; Chait B T; Roeder R G (Oct 2001). "Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo". Mol. Cell. Biol. (United States) 21 (20): 6782–95. doi:10.1128/MCB.21.20.6782-6795.2001. ISSN 0270-7306. PMC 99856. PMID 11564863. 
  7. ^ Liu, Xiaohui; Tesfai Jerusalem; Evrard Yvonne A; Dent Sharon Y R; Martinez Ernest (May 2003). "c-Myc transformation domain recruits the human STAGA complex and requires TRRAP and GCN5 acetylase activity for transcription activation". J. Biol. Chem. (United States) 278 (22): 20405–12. doi:10.1074/jbc.M211795200. ISSN 0021-9258. PMID 12660246. 
  8. ^ Bellorini, M; Lee D K; Dantonel J C; Zemzoumi K; Roeder R G; Tora L; Mantovani R (Jun 1997). "CCAAT binding NF-Y-TBP interactions: NF-YB and NF-YC require short domains adjacent to their histone fold motifs for association with TBP basic residues". Nucleic Acids Res. (ENGLAND) 25 (11): 2174–81. doi:10.1093/nar/25.11.2174. ISSN 0305-1048. PMC 146709. PMID 9153318. 
  9. ^ Tao, Y; Guermah M; Martinez E; Oelgeschläger T; Hasegawa S; Takada R; Yamamoto T; Horikoshi M; Roeder R G (Mar 1997). "Specific interactions and potential functions of human TAFII100". J. Biol. Chem. (UNITED STATES) 272 (10): 6714–21. doi:10.1074/jbc.272.10.6714. ISSN 0021-9258. PMID 9045704. 

Further reading[edit]