Talk:2060 Chiron

From Wikipedia, the free encyclopedia
Jump to: navigation, search
WikiProject Solar System (Rated C-class, Mid-importance)
WikiProject icon This article is within the scope of WikiProject Solar System, a collaborative effort to improve the coverage of the Solar System on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
C-Class article C  This article has been rated as C-Class on the project's quality scale.
 Mid  This article has been rated as Mid-importance on the project's importance scale.
For more information, see the Solar System importance assessment guideline.

The page says that it will eventually fall into one of the gas giants. Is enough known about its orbit to guess when this might happen and which gas giant might consume it? Inquiring minds want to know. KellyCoinGuy

Judging by the fact that it says it approached Saturn to within 16 million KM in 1664 and that's considered a big deal, it's probably safe to assume that if it's believed that it will fall into a gas giant it's because comets (asteroids) simply have a tendancy to do that eventually, and it you might expect it to happen some time in the next million years or so!   freshgavin TALK    04:45, 20 January 2006 (UTC)
I think it is far more likely that a close giant planet flyby changes its orbit dramatically, possibly ejecting it from the Solar System altogether.--Jyril 16:15, 20 January 2006 (UTC)


Did a major reorginization of the article, with the new layout modeled on the article for 90482 Orcus. I'm intending to get this article fixed up, so it can be used as an example for repairing the current state of the centaur articles. shaggy 12:26, 14 March 2006 (UTC)

The sections should NOT be merged into one, as the two articles are about in fact two different astronomical bodies. Instead, why not merge this one (hypothetical moon) into a Saturn article, if it absolutely must be merged with something? —Preceding unsigned comment added by (talkcontribs) 12 April 2010


Is the astrology section sourced in the Guinness Book? If not, it needs to go completely. Captainktainer * Talk 09:18, 9 September 2006 (UTC)

The Astrology section should either be moved to Planets_in_astrology or removed completely. Other comparable scientific articles e.g. Pluto don't have an astrology section. --Mojoh81 10:38, 1 November 2006 (UTC)

Wrong predictions 1664BC[edit]

I checked the article's statement It has been calculated that in 1664 BC Chiron approached Saturn to within approximately 16 million kilometres... with SOLEX. The other was from Kowal There is no agreement about any of the approaches between the two sources. It's not so much that SOLEX 9.1 has 30 yr more recent orbital elements. The researchers had considered perturbations of the five outer planets only. Simulations by SOLEX show that removing just Venus or Mercury completely changes the list of close approach years. So I removed the statement. Saros136 (talk) 18:49, 10 February 2008 (UTC)

Using SOLEX again, I checked to see what reliable close approach predictions can be made. SOLEX has a clone feature, for asteroids. It generates orbital elements for a number of fictitious asteroids, very similar to the first. How similar depends on the estimated uncertainty in the real elements. The only close Saturn-Chiron close passes all the clones made or will make are in May 720, at just under 30 Gm, October 3544, at 137 Gm, and January or February 4606-103 Gm. The predictions hold up if I remove the big three main belt asteroids (Ceres, Pallas, and Vesta) or Pluto(or all four), or if I add all of the biggest ones. Saros136 (talk) 13:29, 11 February 2008 (UTC)

(Note to myself) Horizons shows that Chiron came within 1.84476155AU (275,972,399 km) of Saturn on 1899-Aug-25. -- Kheider (talk) 15:41, 15 March 2009 (UTC)
Solex gives 1.84470677 au, same day. Saros136 (talk) 07:20, 17 March 2009 (UTC)
One of the sources (the Kowal one) gives an approach of 0.1AU from Saturn in the year 1664. If we're going to talk about close approaches to planets, it would be best to stick to ones explicitly stated in published sources. Personally, I don't like the idea of using computer programs to generate facts for articles. It's difficult to properly cite them and, more importantly, it's getting into WP:OR territory. Routine calculations like converting between miles and kilometers is one thing, using advanced software to predict events is something else. Reyk YO! 11:25, 17 March 2009 (UTC)
Their prediction was for 1664 BC, not AD, and was made with an invalid model.
Personally, I don't like the idea of using computer programs to generate facts for articles.. All predictions are made with computer programs, and predictions by Solex and GravSim are as accurate (or more so) as any published ones. I don't know much about GravSim, except that it is very good, but Solex is the creation of one of the leading experts in the field. His thorough testing shows it is very accurate, and its long term predictions of events match those already accepted as true. A Solex or GravSim citation has as much weight as any other source. Saros136 (talk) 07:36, 18 March 2009 (UTC)

The problem with the 1664BC passage is (1) it was generating using older orbital data from the 1970s (2) it only took the 5 outer planets into consideration (Page 247; Paragraph 3). (3) Even Kowal says, "the earlier motion must be considered rather uncertain". The modern programs Solex and Gravity Simulator are far more reliable and have been used in FA articles like Mercury (Paragraph 3, Ref 78) and Mars (Ref 68). -- Kheider (talk) 15:19, 17 March 2009 (UTC)
This doesn't matter now, but it was the Wikipedia article that said the prediction was for 1664BC. Not true. The year was given as -1664, which in astronomy is 1665 BC.Saros136 (talk) 07:44, 18 March 2009 (UTC)

Dead link[edit]

During several automated bot runs the following external link was found to be unavailable. Please check if the link is in fact down and fix or remove it in that case!

--JeffGBot (talk) 05:16, 19 June 2011 (UTC)