Talk:Adversary model

From Wikipedia, the free encyclopedia
Jump to: navigation, search
WikiProject Computer science (Rated Stub-class)
WikiProject icon This article is within the scope of WikiProject Computer science, a collaborative effort to improve the coverage of Computer science related articles on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
Stub-Class article Stub  This article has been rated as Stub-Class on the project's quality scale.
 ???  This article has not yet received a rating on the project's importance scale.
 
WikiProject Computing (Rated Stub-class, Low-importance)
WikiProject icon This article is within the scope of WikiProject Computing, a collaborative effort to improve the coverage of computers, computing, and information technology on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
Stub-Class article Stub  This article has been rated as Stub-Class on the project's quality scale.
 Low  This article has been rated as Low-importance on the project's importance scale.
 

Currently in the article:

The three common adversaries are the oblivious adversary, the adaptive online adversary, and the adaptive offline adversary.
The oblivious adversary is sometimes referred to as the weak adversary. This adversary knows the algorithm's code, but does not get to know the randomized results of the algorithm.
The adaptive online adversary is sometimes called the medium adversary. This adversary must make its own decision before it is allowed to know the decision of the algorithm.
The adaptive offline adversary is sometimes called the strong adversary. This adversary knows everything, even the random number generator. This adversary is so strong that randomization does not help against him.

This sounds as if online algorithms always had a randomizing component, which is not the case - right? --Abdull (talk) 09:12, 26 July 2008 (UTC)