Talk:D-Wave Systems

From Wikipedia, the free encyclopedia
Jump to: navigation, search
          This article is of interest to the following WikiProjects:
WikiProject Canada / British Columbia (Rated C-class, Low-importance)
WikiProject icon This article is within the scope of WikiProject Canada, a collaborative effort to improve the coverage of Canada on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
C-Class article C  This article has been rated as C-Class on the project's quality scale.
 Low  This article has been rated as Low-importance on the project's importance scale.
Taskforce icon
This article is supported by WikiProject British Columbia.
WikiProject Companies (Rated C-class, Mid-importance)
WikiProject icon This article is within the scope of WikiProject Companies, a collaborative effort to improve the coverage of companies on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
C-Class article C  This article has been rated as C-Class on the project's quality scale.
 Mid  This article has been rated as Mid-importance on the project's importance scale.
WikiProject Computing / Hardware (Rated C-class, Mid-importance)
WikiProject icon This article is within the scope of WikiProject Computing, a collaborative effort to improve the coverage of computers, computing, and information technology on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
C-Class article C  This article has been rated as C-Class on the project's quality scale.
 Mid  This article has been rated as Mid-importance on the project's importance scale.
Taskforce icon
This article is supported by Computer hardware task force (marked as High-importance).
WikiProject Technology (Rated C-class)
WikiProject icon This article is within the scope of WikiProject Technology, a collaborative effort to improve the coverage of technology on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
C-Class article C  This article has been rated as C-Class on the project's quality scale.
Checklist icon


As I put in the article, on January 19, 2007 D-Wave announced that they would be demonstrating the first commercial 16-qubit adiabatic quantum computer at two events, one at the Computer History Museum in Mountain View, California on February 13th, 2007 and the second at the Telus World of Science in Vancouver, Canada on February 15th, 2007.[1]

I am hoping that once the event has happened there will be enough interest in this topic that people who know a lot more about the physics, technical details, etc. will edit and add to to this and related pages. It may also be a good idea for someone to create a page about adiabatic quantum computers.

There is a lot of information out there. Here are some external links I have found through a Google search on "adiabatic quantum" and some sites:

.. and a lot more

MartinSieg 20:11, 12 February 2007 (UTC)

256 & 512 Qbit chip[edit]

Needs update with mention of D-Wave's upcoming 256 Qbit chip, around mid 2012 & 512 Qbit chip, around 1 Jan 2013. -- (talk) 14:50, 22 November 2011 (UTC)

Based on pseudoscience[edit]

I don't know how to express it, but this company's technology is vaporware and pseudoscience. There are several problems with both the hardware and the computation: (1) there has been no fundamental breakthroughs in the physics required to create a quantum computer (an immediate Nobel event) and (2) it is strongly suspected that quantum computing cannot solve NP-complete problems in polynomial time. I am not a physicist so I will not address (1), however, I am a computer scientists (PhD), although quantum computing is not my particular field. Quantum computing is BQP and not NP, nor is there any known algorithm for computing NP-complete problems in Polynomial time on a quantum computer. If there are no NP->P transformations then this device is at no advantage to a classical computer so saying it `solved the traveling salesman problem' is a little misleading: answers to this problem can be computed in exponential time on a classical machine. I'm not sure how to say this other than that this article (and it's mention at is highly suspect. I do not believe that the pseudoscience or fraudulent claims should be allowed in reference material. Would it be possible to mark this to make the reader wary?

Response: You raise some good points. However, you admit that you are neither a physicist nor a quantum computing specialist; whereas D-Wave employs several physicists and quantum computing specialists. Thus it's quite possible that they know something that you and the rest of us do not. Further, since D-Wave is a commercial enterprise, not an academic organization, the more significant their breakthroughs, the less likely they would be to reveal the details. So, hopefully, D-Wave will eventually demonstrate a system that behaves like some kind of "quantum" computer should and also performs as well as they predict. -- Red Cedar Salmon 20:46, 16 July 2007 (UTC)

Response: Wikipedia is a place for established fact, not speculative statements. Anyone can make an outrageous claim. Does that warrant a spot on Wikipedia? Of course not - it would quickly become an advertizing trick. It is entirely possible that an outrageous claim is true. But the burden of proof rests with those making the claim. In science, claims have merit only to the extent that they're verifiable - corporate secrecy is not a free ticket out of scientific scrutiny. Speculative articles such as this one are an embarrassment to Wikipedia. —Preceding unsigned comment added by (talk) 03:08, 8 July 2008 (UTC)

Article states that NP-complete problems "not exactly solvable"?[edit]

According to the article, the company's CTO has stated that 'NP-complete problems "are probably not exactly solvable, no matter how big, fast or advanced computers get"'.

This strikes me as a very odd thing to say. As I understand it, all NP-complete problems are by definition in NP, which means that they must be exactly solvable, or their solutions could not be verifiable in polynomial time, which is one of the defining attributes of NP problems, even if you need a nondeterministic oracle to produce the candidate correct result. What's going on here? -- The Anome 10:00, 14 February 2007 (UTC)

Agreed. From what I've read an NP-complete problem is one that is definitly solvable, (so we could build an algorithm to solve it), but that it would take an unreasonable amount of time to reach the solution. A QC page from NEC states that to completely factor a 300-digit number would take ~10 million years on a conventional computer, but only "several tens of seconds" on a QC. Sahuagin 15:04, 16 February 2007 (UTC)
After reading what Dr. Rose wrote, I think what he means is that in an NP-complete problem, you never really know if your answer is the best possible answer (IE: An exact solution). If instead of only aiming for the single best answer, you provide a threshold that determines what you would consider to be a sufficient answer, then the computer can stop when it finds a sufficient answer.
Now, I don't get though why the computer couldn't just run through ALL possible solutions, selecting the best one. From what I have read about QC's thus far, that is what I thought they would be used for. To me what he explained sounds like a conventional computing solution to NP-complete problems. If a QC can only give you an adequate answer, and not the exact answer, then what is the point of a QC? Sahuagin 15:17, 16 February 2007 (UTC)

By "probably not exactly solvable" he was stating that it was likely that P=NP is not the case. It's currently the case that solutions may be found to NP problems, but with a very high cost in terms of speed. 16:46, 14 May 2007 (UTC)


An earlier version of this article read like a company press release. I've toned it down a bit, but it still makes no mention of any of the skeptical opinions which have been expressed about this demonstration (for example, see [4]), and the apparent lack, so far, of independent technical verification of their results. -- The Anome 10:14, 14 February 2007 (UTC)

This article is a great example of where the Wikipedia principles fail. A typical mix pseudoscience with emotional bias, a hint of conspiracy theory and special interest paid writers. Reminds me of some esoteric articles. (talk) 21:12, 24 October 2013 (UTC)

NP-Complete ... very hard[edit]

Thank you to The Anome for contributions to this page. I see that you also moved Orion quantum computing system here, which I agree makes sense, at least until there is consensus that it is a proven system of historical significance. I guess my original version sounded like a press release because most of the information I found on the web was written by Dr. Rose. That's why we need people who know more about the related topics to revise the page.

My limited understanding of NP-complete problems and what Dr. Rose was saying about them is that they are not solvable in polynomial time by any foreseeable technology, and it is already accepted that we can accomplish a lot with ansers that are "good enough". If someone can clarify this in the article, please go ahead.

MartinSieg 15:33, 14 February 2007 (UTC)

"That's why we need people who know more about the related topics to revise the page."

This includes criticism. WP is not a brochure. -Ste|vertigo 21:52, 14 February 2007 (UTC)

Separate info about company and tech[edit]

Perhaps this article should be strictly about D-Wave, including its history, people, goals, claims, and of course how others view it (skeptics, etc.).

My intent for the article about the Orion quantum computing system, which was merged with this one, was to provide information about the technology itself. Perhaps we need an article on adiabatic quantum computing instead? I feel that the article Adiabatic process (quantum mechanics) is insufficient. —The preceding unsigned comment was added by MartinSieg (talkcontribs) 04:29, 15 February 2007 (UTC).

At the moment, the company and the product are inseparable, since so far, the Orion quantum computing system is not available for sale, and no-one has one, apart from D-Wave Systems themselves. When these machines are widely deployed, or become famous in a context that is separate from their creator company, then the product itself will of course deserve its own article, in the same way as any notable computer product. -- The Anome 10:01, 15 February 2007 (UTC)

Cliff Notes on Quantum Computing[edit]

Yes, an NP-complete problem is in NP by definition, and is therefore a yes-no question by definition and is not amenable to approximate solutions. However, there are optimization problems that can be called FNP-complete: They are NP-hard, and if P = NP, then they are in (the function version of) P. What Rose means is that we should be happy with approximate solutions to FNP-complete optimization problems, even though exact solutions are out of reach, even with quantum computers.

However, there is a theorem from the 1980s that for many FNP-complete problems, in particular for the travelling salesman problem, there is a threshold beyond which approximate solutions are already FNP-complete. This is contrary to what some of the press releases from D-Wave imply. On the other hand, in some places Rose steps back from this implication, and says that his computer might only provide some speedup for optimization problems in FNP, maybe only a polynomial speedup rather than an exponential speedup. If so, it would have no real bearing on NP-hardness, because all such notions allow a polynomial fudge factor.

The disclaimers from D-Wave imply that the Orion is not really a quantum computer, but a quantum special-purpose device. If you set aside quantum mechanics for the moment, it is easy to understand that a computer is suppose to be general-purpose, or in technical terms, Turing-complete. If it is not Turing-complete, then it is an SPD. Likewise a quantum computer should be quantumly Turing-complete. Since there is no such claim in the case of the "Orion" device, it is at best a quantum SPD. You can call it clasically Turing-complete if you count the classical computer that controls it. The technical debate at the moment is whether D-Wave's demo has any strength even as a quantum SPD, or if it is really a classical facsimile.

If some company, D-Wave or Q-Wave or someone else, built a real quantum computer, it still would not be able to try all things in parallel and solve NP-complete problems. Quantum computing should really be thought of as "randomized computing on steroids". Randomized computing is a kind of parallel computing, in the sense that if you flip a coin, you can imagine parallel worlds in which the answer was both heads and tails. It is a weak kind of parallelism that has some computational value, but only a limited amount. Quantum computing is similarly limited, even though it is exponentially faster than classical computing (even the randomized kind) for certain structured problems such as factoring. It is NOT thought to be all that much faster for NP-complete problems. Greg Kuperberg 21:26, 17 February 2007 (UTC)

Needed Content and Fixes[edit]

The article is all about the recent announcement of D-Wave's and not the company itself. Content around this was needed. Material from archived versions of company website added. Content arround Orion demos pushed down the page. The quote of Andrew Steane was made to the Guardian newspaper so that source should be found and cited. Positive opinion on the announcement along with a call for peer review was made by David Deutsch, citation needed. Shadesofgrey 00:47, 19 February 2007 (UTC)

I study quantum computing and you have my attention. What do you want to know? Greg Kuperberg 04:23, 19 February 2007 (UTC)
Greg, what is needed is a description of an adiabatic quantum computer. Shadesofgrey 04:52, 20 February 2007 (UTC)


Should we note that their name is most likely a pun on d-wave as in l=2\, angular momentum state, d-wave superconductivity, etc.?--Lionelbrits 16:40, 25 March 2007 (UTC)

Given the scepticism in the media coudl we say that D-Wave product are both Quantum Computers andNot Quantum computers, both at the same time? ;) — Preceding unsigned comment added by (talk) 08:27, 20 May 2014 (UTC)

Speaking Truth to Parallelism[edit]

For additional skepticism, see also: Shtetl-Optimized blog by Scott Aaronson [5] [6]- 01:43, 23 April 2007 (UTC)

Deutsch on D-Wave[edit]

For an interview with David Deutsch, expressing skepticism about what precisely D-Wave has achieved but optimism about the general prognosis for quantum computing, see: Wired 2007-02, The Father of Quantum Computing [7] Iain David Stewart 22:43, 15 May 2007 (UTC)

Nov 2007 demo[edit] -Ravedave 22:08, 12 November 2007 (UTC)


I keep an eye on slashdot and they recently posted an article referring to tomshardware that says Orion now has 28 qubits. See [8]. The only thing I'm not sure of is if this is a reliable source.  Laptopdude  Talk  05:14, 28 July 2008 (UTC)

It's unlikely they have any qubits ;) Tom's hardware probably isn't an RS for this article. Verbal chat 07:25, 28 July 2008 (UTC)
I'm much more certain about this one. [9]  Laptopdude  Talk  21:35, 30 July 2008 (UTC)
I hope you're being sarcastic, that's a press release. :) -- intgr [talk] 10:49, 31 July 2008 (UTC)


Is this technology AQC, near adiabatic evolution (ie finite error) or something else. Published coments suggest that it is but D-Wave itself isn't being exactly clear on the matter. Here are three pro AQC citations. Perhaps, these are of use to some contributor.

Meglicki, Zdzislaw (2008). Quantum Computing Without Magic: Devices. MIT Press. pp. 390–391. ISBN 026213506X. 

Kyriakos N. Sgarbas, 2007, "The Road to Quantum Artificial Intelligence" in T.S.Papatheodorou, D.N.Christodoulakis and N.N.Karanikolas (eds), "Current Trends in Informatics", Vol.A, pp.469-477, New Technologies Publications, Athens, 2007 (SET 978-960-89784-0-9)

G.P. Berman. A.R. Bishop, F. Borgonovi, V.I. Tsifrinovich, 2007 "Controllable Adiabatic Manipulation of the Qubit State" arXiv:0705.1255v1 [quant-ph] Shadesofgrey (talk) 01:10, 10 August 2009 (UTC)

Peer Review[edit]

Some earlier versions of this article cited D-Wave's articles to counter balance statements that none of D-wave's has been shared with the physics community. Thus maintaining a NPOV. However, these were citations to the a pre-print server, whichis not what most would consider peer reviewed -- but it does have a referal system to qualify contributors. So citations were removed. However, it is clear that D-Wave has many peer review articles -- see below. Perhaps, these can be worked in beside comments like "which has not been published or shared with the physics community"

Phys. Rev. A 79, 022107 (2009); Int. J. Quant. Inf. 7, 725 (2009); Phys. Rev. Lett. 101, 117003 (2008); Phys. Rev. Lett. 100, 197001 (2008); Phys. Rev. Lett. 100, 130503 (2008); Quantum Information Processing, 7, pp. 193-209 (2008); Phys. Rev. A 78, 012352 (2008); Phys. Rev. Lett. 100, 060503 (2008); Appl. Phys. Lett. 90, 022501 (2007); Physical Review Letters, Volume 98, 177001 (2007); Phys. Rev. Lett. 98, 057004 (2007); Quantum Information Processing 6, pp. 187-195 (2007); Phys. Rev. B 74, 104508 (2006); Phys. Rev. Lett. 96, 047006 (2006); Phys. Rev. A 74, 042318 (2006); Science 309, p. 1704 (2005); Europhys. Lett. 72(6), pp. 880-886 (2005); New J. Phys 7, p. 230 (2005); Phys. Rev. B 72, 020503(R) (2005); Phys. Rev. B 71, 140505(R) (2005); Phys. Rev. B 71, 144501 (2005); Low Temp. Phys. 30, 661 (2004); Phys. Rev. A 70, 032322 (2004); Fizika Nizkikh Temperatur 30, 823 (2004); Phys. Rev. Lett. 92, 017001 (2004); Phys. Rev. B 70, 212513 (2004); Phys. Rev. Lett. 93, 037003 (2004); Phys. Rev. B 71, 024504 (2005); Phys. Rev. B 71, 064503 (2005); Phys. Rev. B 71, 064516 (2005); Europhys. Lett. 65, 844 (2004); Turk J Phys 27, 491 (2003); Phys. Rev. B 68, 014510 (2003); Phys. Rev. B 68, 134514 (2003); JETP Letters 77, 587 (2003); Phys. Rev. B 69, 060501(R) (2004); Phys. Rev. Lett. 91, 097906 (2003); Phys. Rev. Lett. 91, 097904 (2003); Phys. Rev. Lett. 90, 117002 (2003); Phys. Rev. B 68, 144514 (2003); Phys. Rev. B 67, 100508(R) (2003); Phys.Rev. B 67, 155104 (2003); Phys. Rev. Lett. 90, 127901 (2003); Phys. Rev. Lett. 90, 037003 (2003); Phys. Rev. B 66, 214525 (2002); Phys. Rev. B 66, 174515 (2002); Quantum Information Processing 1, 155 (2002); Quantum Information Processing 1, 55 (2002); Physica C 368, 310 (2002); Physica C 372-376 P1, 178 (2002); IEEE Tran. Appl. Supercond. 12, 1877 (2002); Physica B 318, 162 (2002); Low Temp. Phys. 27, 616 (2001); Phys. Rev. Lett. 86, 5369 (2001); Phys. Rev. B 63, 212502 (2001)

Shadesofgrey (talk) 01:22, 10 August 2009 (UTC)

Neutrality, Factual Accuracy, and Lack of Recent Information[edit]

The article currently reads like the company has been proven beyond a shadow of a doubt to be a scam and has published nothing on what it has done, which is not only non-neutral, but false. There is also very little recent information in the article, and a near void of information on their technology. My addition of a very brief description of recent technology based on peer-reviewed publications with links to them and their their pre-prints was instantly undone. Is there some reason for this information to be hidden? The existence of these publications (among many others, e.g. those cited by Shadesofgrey above) appears to contradict statements in the article now, so even if the publications should not be linked-to in the article, it seems that the article may not currently provide a fair and accurate description of the company or its work. I'll try to add a box at the top indicating that I think the neutrality of the article is questionable.

I fully acknowledge that I am not a neutral party with respect to this article, but apart from the photograph showing the existence of a real chip (also available at my addition only stated information published in cited peer-reviewed papers. Other photographs appear in those peer-reviewed papers, if those would be preferable. Ndickson (talk) 20:44, 6 June 2010 (UTC)

The problem is the lack of independent reliable sources, whereas we have WP:RS that they probably do not have a quantum computer. They have also been show to lie in the past. Verbal chat 05:54, 7 June 2010 (UTC)
WP:RS contains: Wikipedia:RS#Scholarship. I cited 4 peer-reviewed publications. Are you suggesting that Physical Review B, Superconducting Science Technology, and Science are less reliable sources than blog posts by people who don't have knowledge of the technology? Just up one paragraph from Wikipedia:RS#Scholarship: "Many Wikipedia articles rely on scholarly material. Academic and peer-reviewed publications are usually the most reliable sources when available." In fact, to avoid any potential confusion with a universal quantum computer, I intentionally didn't refer to it as a "quantum computer", but an "adiabatic quantum optimization processor". The publications I cited give strong evidence that this is a valid classification, whereas the blog posts give no evidence that it is not valid, only speculative opinion. As for your claim that "They have also been show to lie in the past." I don't think that Physical Review B, Superconducting Science Technology, or Science have been shown to intentionally publish false information, so I suggest that you provide some evidence of their supposed past lies. —Preceding unsigned comment added by Ndickson (talkcontribs) 18:18, 7 June 2010 (UTC)
Dwave have been shown to make untrue statements in the past (see their press releases), and as you have a clear COI you should not edit the article. Your dismissal of an expert in the area as "blog posts by people who don't have knowledge of the technology" shows your bias quite clearly. See WP:PRIMARY, and lets wait for second or third party reviews by people not affiliated with Dwave. The company have made their own bed by their attitude to the press and their scientific colleagues. Verbal chat 18:54, 7 June 2010 (UTC)
I'm not sure what you mean by "expert in the area", since Scott Aaronson has stated that he's not an expert in experimental physics and doesn't want to be asked about related matters: e.g. [10]. He's an expert in computational complexity theory, which only has a loose tangential relationship with experimental quantum computing. To my knowledge, D-Wave has not issued any press releases that contradict accepted results in complexity theory, so you'll have to give an example. Also, Aaronson does not claim to know details of D-Wave's technology, (in fact, many of the significant criticisms appear to specifically take issue with having a lack of information about D-Wave's technology), so I'm not sure how he could give an informed statement on the state of their technology. He certainly hasn't cited any technological reasons for his opinions on D-Wave. Ndickson (talk) 21:32, 7 June 2010 (UTC)

Please propose here what changes and additions you would like made. Verbal chat 18:55, 7 June 2010 (UTC)

The page was originally created as a description of the demonstration of so-called "Orion" in 2007, but it hasn't changed significantly since then. It provides criticism, as it should, but no information on what is being criticized, and no information more recent than the listed criticisms, so it is difficult to ascertain whether even the criticism is up-to-date.
There should be some sort of description of recent technology and recent events. For example, the "Orion description" section, which doesn't even describe Orion, let alone its technology, refers in vague terms to technology that is several years old and no longer reflects the current state. Also, surprisingly, there is mention of two collaborations between Google and D-Wave (2007 and 2009) in the Hartmut Neven article, but no mention of these collaborations here. This is strong evidence that this article has become quite out-of-date and needs more recent information. Full details of D-Wave's technology have been published, most in peer-reviewed journals, such as those I cited.
With respect to neutrality, for example, the word "claim" appears 4 times in the introductory paragraph. While this type of language is (probably) grammatically correct, to hold other entities to the same standard, the same could be said of almost all other scientific efforts, since individual results (i.e. "this particular instance of this apparatus did exactly this on this date") are rarely possible to independently verify. Thus, peer-review and repetition of the experiment by independent entities for verification are used to determine the validity of experimental results (please see Scientific method). The paper cited with evidence of qubits shows extensive results from Macroscopic Resonant Tunnelling experiments as well as Landau-Zener transition experiments, which have been performed on rf-SQUIDs many times by other independent parties, so D-Wave's results are themselves an independent verification of these effects. This paper was accepted by Physical Review B as valid after review by independent experts in experimental superconducting quantum circuitry. As such, this fits with the standards set out by the scientific method. {Edit: Upon further investigation, NIST has also independently verified D-Wave's coupler design in the context of a superconducting phase qubit: [11] published in PRL recently. Ndickson (talk) 22:58, 7 June 2010 (UTC)}
While I understand that editing for neutrality is difficult, and open to different interpretations, it would be very difficult to argue to an independent mediator that the current article is written in a neutral tone. I strongly support keeping critical content, especially if some sort of context for the ciriticisms is given, but the text surrounding that content must be neutral. Although it is a large task to undertake, I would recommend that the current content and any added content eventually be rewritten by an independent party in a neutral tone. Ndickson (talk) 21:32, 7 June 2010 (UTC)
Taking into account the desire for having secondary sources supporting even peer-reviewed primary sources (one could argue that Physical Review B is not affiliated with D-Wave and thus not a primary source, but I won't go there), I recommend that the Technology Description section I attempted to add be slightly amended before adding it (bolded here just for easy reference):
[[File:DWave_128chip.jpg|| thumb | right |Optical photograph of a [[superconductivity|superconducting]] [[integrated circuit|integrated circuit]] designed to be used as a 128-qubit [[adiabatic quantum computation|adiabatic quantum optimization]] processor<ref>Next Big Future: Dwave Systems Adiabatic Quantum Computer [], October 23, 2009</ref>, comprising a tiled array of 16 unit cells, mounted in a sample holder of the Quicksilver system (the successor to Orion). ''Photo courtesy of D-Wave Systems Inc.'']]
As of June 2010, it has been published that a D-Wave processor comprises a programmable[2] superconducting integrated circuit with up to 128 pair-wise coupled[3] superconducting flux qubits[4][5][6]. The processor is designed to implement a special-purpose adiabatic quantum optimization algorithm[7][8] as opposed to being operated as a universal gate-model quantum computer.
Note that two of the Next Big Future links refer to material that has not (yet) been peer-reviewed, and the blog itself has not been peer-reviewed. However, since it is unlikely that any of the current sources in the article are peer-reviewed (including the opinion piece in Nature), I'm guessing that you don't have an issue with non-peer-reviewed material. Also, the reference in the photo is the same as one of the others, but I don't know how to make them a single reference (hopefully you do). Would you have any objections to the above paragraph and image being added?
This still wouldn't address the issues of neutrality, but would at least begin to make the article less out-dated. Ndickson (talk) 21:57, 8 June 2010 (UTC)
Two big problems, 1 no disclaimers. If the photo isn't free then we cant use it. 2, it should just call it a processor as the "quantumness" of the processor has not been independantly verified. Verbal chat 07:48, 9 June 2010 (UTC)
I see the picture includes a copyright watermark, therefore I have requested it be deleted. Look into our policies on pictures, I'm afraid they're quite complicated. Verbal chat 07:51, 9 June 2010 (UTC)
As indicated by the license box on the image's page, the image is released under the GFDL, which overrules the copyright watermark, and it is therefore free. Because it has been released under GFDL, anyone (such as you or I) is free to create a new work with the copyright watermark cropped out, if there is an issue with it being there. Also, the "quantumness" of rf-SQUIDs has been independently verified by many groups even dating back as far as the 1980's, so I can provide citations to dozens of peer-reviewed publications showing this, if you would like. Ndickson (talk) 17:59, 9 June 2010 (UTC)
Then please update the image to a cropped one. You also can't have the text "Photo courtesy of D-Wave Systems Inc" or anything like it appear. You might want to have a look at sending WP:OTRS (I think) proof that the picture has been released. Verbal chat
Actually, it looks like Wikipedia won't let me select GFDL anymore, so I'll re-contact their legal representative to see if it can be released under one of the Creative Commons licenses or something like that and crop that. GFDL has clauses for relicensing, but they don't appear to be entirely clear for this case, so this might as well be done thoroughly. I'll get back to you when I have more info, and thanks for your recommendations. Ndickson (talk) 19:52, 9 June 2010 (UTC)
The reply was that it's okay to upload a version without the watermark, released under CC Attribution, so I've done that and will get them to email to verify. Ndickson (talk) 00:06, 11 June 2010 (UTC)
The image permission is now verified: File:DWave_128chip.jpg. Did you have any additional objections to the technology description? Ndickson (talk) 01:05, 15 June 2010 (UTC)
  1. ^ Cite error: The named reference announcement was invoked but never defined (see the help page).
  2. ^ M. W. Johnson et al., "A scalable control system for a superconducting adiabatic quantum optimization processor," Supercond. Sci. Technol. 23, 065004 (2010); preprint available: arXiv:0907.3757
  3. ^ R. Harris et al., "Compound Josephson-junction coupler for flux qubits with minimal crosstalk," Phys. Rev. B 80, 052506 (2009); preprint available: arXiv:0904.3784
  4. ^ R. Harris et al., "Experimental demonstration of a robust and scalable flux qubit," Phys. Rev. B 81, 134510 (2010); preprint available: arXiv:0909.4321
  5. ^ Next Big Future: Robust and Scalable Flux Qubit, [1], September 23, 2009
  6. ^ Next Big Future: Dwave Systems Adiabatic Quantum Computer [2], October 23, 2009
  7. ^ Edward Farhi et al., "A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem," Science 92, 5516, p.472 (2001)
  8. ^ Next Big Future: Dwave Publishes Experiments Consistents with Quantum Computing and Support Claim of At Least Quantum Annealing, [3], April 09, 2010

This article is ridiculously biased against D-Wave and needs extensive cleanup[edit]

Ndickson did not remove any of D-Wave's criticism (though many of them don't apply), but simply added facts, supported by peer-reviewed and published papers. If D-wave critics have a reason to doubt the correctness of any of the papers please share them with the scientific community. Otherwise stop undoing modifications that introduce uptodate and factual information to the wiki page.

Verbal, do you realise that saying something like "The problem is the lack of independent reliable sources" and at the same time removing references to published papers is a contradiction? You want to avoid anything that disproves your pre-conceived ideas, based on some opinionated blog entries? You are the one who has to defend yourself. Either prove the published papers wrong, or stop keeping this page out-of-date. —Preceding unsigned comment added by (talk) 19:20, 7 June 2010 (UTC)

See WP:PRIMARY. Please propose changes you would like in a neutral manner. Verbal chat 19:40, 7 June 2010 (UTC)
It seems that bashing D-Wave has become an ego thing for some people, but Wikipedia is not a place for that. Let's keep D-Wave's page as factual as possible. Take comments like "I think D-Wave is this" or "I haven't seen any evidence for that" to personal blogs, where such speculations belong.
Ndickson has laid out the general direction. In more concrete terms I suggest the following modifications for the near future:
1) Integrating NDickson's changes: (*) adding a picture of the 128-qubit chip to show this is no "vaporware" and mention that Orion has been outdated. (*) Adding the "New Technology" section to inform Wikipedia readers about D-Wave's latest technology, backed by peer-reviewed papers.
2) Adding a section about the 2009 Google demo. I propose the following text (quite factual):
== 2009 Google Demo ==
On Tuesday, December 08, 2009 at the Neural Information Processing Systems (NIPS) conference, a Google research team lead by Hartmut Neven used D-Wave's processor to train a binary image classifier. The theory behind the classifier is explained in, while descriptions of the implementation details appear in
3) Adding a link to D-Wave's list of peer-reviewed, published papers, because honestly, removing published papers from this Wikipedia page and at the same time complaining that D-Wave people don't share information with the scientific community is funny and sad at the same time. —Preceding unsigned comment added by (talk) 17:52, 8 June 2010 (UTC)
First problem: The google text you propose would require an independent WP:RS (not google or dwave) to support the text beyond the event happening. There should not be a link to all publications as we don't do that for any other company involved in research. Let's stick to WP:RS and not primary sources. Verbal chat 18:03, 8 June 2010 (UTC)
I'm neither for nor against the above text, but it might be worth re-reading WP:PRIMARY before you dismiss things. e.g.: "Primary sources that have been reliably published may be used in Wikipedia, but only with care, because it is easy to misuse them. Any interpretation of primary source material requires a reliable secondary source for that interpretation. A primary source can be used only to make descriptive statements that can be verified by any educated person without specialist knowledge. For example, an article about a novel may cite passages to describe the plot, but any interpretation needs a secondary source. Do not make analytic, synthetic, interpretive, explanatory, or evaluative claims about material found in a primary source." The above text does not interpret the sources it cites, it states explicitly material in those sources. Secondary sources are much more likely to contain editorialized opinion than fact, but there are many secondary sources that reported on the demonstration with Google, if you'd prefer. —Preceding unsigned comment added by Ndickson (talkcontribs) 18:14, 8 June 2010 (UTC) Ndickson (talk) 18:15, 8 June 2010 (UTC)
That doesn't conflict with what I have said. The second sentence should therefore be removed, leaving the whole thing unsourced. Verbal chat 18:56, 8 June 2010 (UTC)
True, it doesn't directly conflict with what you said here, and I fully agree that the sources the anonymous user above listed for the collaboration with Google are not so good (certainly not peer-reviewed). I also agree that for describing the Google collaboration, there are many secondary sources that could be preferable. However, I'm not aware of any secondary sources on the technology that could be argued to be more reliable than the peer-reviewed (i.e. "reliably published") primary sources. There are more blog entries, such as NextBigFuture, which summarize some of the content of papers, if you'd just like to have a third party reference. e.g. [12] They'd be slightly easier to digest than the full papers, but only give partial information, which may be sufficient. I'll continue this in the above section, where tempers appear a bit less heated. Ndickson (talk) 20:56, 8 June 2010 (UTC)
What intrigues me about D-Wave's page at its current form is that most of the criticisms are sourced from blog entries and other non-peer-reviewed sources (basically personal opinions and speculations), while any attempt at adding scientifically verified information is met by resistance.
Removing references to Google demo papers is not a problem. The result would be:
== 2009 Google Demo ==
On Tuesday, December 08, 2009 at the Neural Information Processing Systems (NIPS) conference, a Google research team lead by Hartmut Neven used D-Wave's processor to train a binary image classifier.
As a source, one can use or or any of the many articles one can find over the Internet about this demo. —Preceding unsigned comment added by (talk) 21:28, 8 June 2010 (UTC)
That would be a good addition I think. Verbal chat 07:46, 9 June 2010 (UTC)
I added the section. Thanks. —Preceding unsigned comment added by (talk) 19:15, 9 June 2010 (UTC)

List of D-Wave's peer-reviewed, published papers[edit]

Here is a link to D-Wave's list of peer-reviewed, published papers: It does include papers published prior to 2005 (invalidating a claim on the Wikipedia page). Any suggestions as to the best way of making this list available on the Wikipedia page? —Preceding unsigned comment added by (talk) 20:45, 10 June 2010 (UTC)

Thanks for the addition of the list Verbal. I edited the page to emphasize that they are peer-reviewed, and also removed the statement about pre-2005 publications not being available. —Preceding unsigned comment added by (talk) 17:20, 11 June 2010 (UTC)

Here is an article in IEEE Spectrum about it:

Key quotes:

"If this were the real thing, we would know about it. D-Wave hasn't demonstrated signatures believed to be essential to quantum computers, such as entanglement, a coupling between qubits." --Christopher Monroe, a quantum-computing researcher at the University of Maryland, in College Park.

"Even the best prototypes can't keep more than 10 qubits in entangled states for long. Because of this I am very skeptical of D-Wave's claims that it has produced a 128-qubit quantum computer, and talk of reaching 10 000 qubits at this point is advertising hype." -- Paul Benioff, physicist who pioneered quantum computing at Argonne National Laboratory, in Illinois,

"D-Wave has made claims that have not been generally regarded as substantiated in the community." -- Anthony Leggett, Nobel laureate in physics, University of Illinois at Urbana-Champaign. Guy Macon (talk) 07:16, 22 May 2011 (UTC)

More quotes, this time from Scott Aaronson, Associate Professor of Electrical Engineering and Computer Science at MIT, expert on the limitations of quantum computing.
"it's notable that, now that D-Wave has happily joined the ruling-out-the-null-hypothesis club, we're down from 128 qubits back to 8. This paper also makes no claims to demonstrate entanglement, which is almost certainly necessary for any interesting quantum speedup." --
"Any claims by D-Wave that the practical value of quantum annealing has already been demonstrated need to be taken with a huge grain of salt." -- Guy Macon (talk) 18:12, 27 May 2011 (UTC)
You all might be interested in an article in Nature (12 June 2011, p. 18) titled "First sale for quantum computing". It also discusses the "mistrust" some folks have about D-Wave. - J. Johnson (JJ) (talk) 23:33, 17 July 2011 (UTC)


This is very silly. Arguing about something that can be measured is a waste of time. It appears that some people are just not ready to accept a quantum break-though yet, no matter what. Skepticism is healthy, as long as it's not just an excuse to be lazy.--SkipMcCormick (talk) 01:42, 4 March 2012 (UTC)

D-Wave Two vs PC comparison - fair or not[edit]

Following the addition of the recent QC vs PC comparison source, I added the following text to the article (This claim is attributed to Catherine McGeoch in the article, although not quoted):

However, she admitted that the comparison is "not quite fair, because generic computers will always perform less well than a device dedicated to solving a specific problem"

Based on a paragraph from the article:

The speed tests are also not quite fair, because generic computers will always perform less well than a device dedicated to solving a specific problem, says McGeoch. "A next step would be to build a conventional processor optimised for this task, for a fairer comparison," says O'Brien.

An anonymous editor changed it to:

However, it is not unusual for general-purpose algorithms to perform less well than a device dedicated to solving a specific problem

There are multiple problems with this formulation, all of which seem to erode its value:

  • The attribution of McGeoch was removed, who is the authority in this case. Positive statements are attributed to McGeoch, and so should the negative, if she said them.
  • The admission that the comparison is unfair. As far as I can tell this was a comparison between regular PC CPUs against QC -- which I find unfair, because it's not the best that classical computers have to offer. Comparing QC to GPUs (vector processors) and ASICs would be fairer.
  • "is not unusual" is very awkward formulation. Consider "It is not unusual for CPUs to perform less well than a GPU at rendering 3D graphics". While technically true, it suggests that sometimes CPUs may be faster -- it's misleading. The source says "will *always* perform less well"

Note that McGeoch was hired as a consultant by D-Wave, with the goal of coming up with a favorable comparison between quantum and classical computers. It's not a surprise to be that the comparison is unfair, but it's better to state explicitly in the article for balance. -- intgr [talk] 17:34, 17 May 2013 (UTC)

I think the reason why the "algorithm" expression was used instead of the "conventional processor" expression is that it has been shown that you can get as good or better performance than D-Wave using a conventional processor with custom software packages designed to solve the problems D-Wave is good at solving. See my edit in the controversy section for the reference. (talk) 00:26, 2 July 2013 (UTC)

Criticism section[edit]

The criticism section is pretty flawed. It implies that after the google/NASA deal, all academic critics have stopped criticizing the company. This is not true. In general, the criticism section should be about the specific complaints of critics, and the response by the company - and a new impressive deal with google+NASA doesn't count as a response.

Another point which is often raised in discussions is that "pro D-Wave" views are based on published peer-reviewed articles, and the criticism is from blog posts and private discussions. While this is true, it risks leading to a dangerously distorted article. The peer review of D-Wave's articles doesn't mean that they are accepted as true, or as telling the whole story, but mostly that they are interesting and likely to be true, and to contain new science. On the other hand, criticizing D-Wave will rarely be publishable because it is hard to say "this company is full of BS" in a way that has new scientific content that a journal will want to publish. So we should be careful not to confuse publication with credibility here. Nevertheless, it is interesting that nevertheless people have found ways to make their D-Wave criticism into scientifically interesting articles; see e.g. arXiv:0705.1115. Aram.harrow (talk) 01:14, 22 May 2013 (UTC)

At least some of the "peer-reviewed articles" are, in fact press releases, or have no content which is falsifiable. Still, we do have a problem with blogs and unpublished papers (arXiv are not published); namely what is the field we are looking for an "expert" in, per WP:SPS. "Quantum computing" (we don't know who the experts are), "experimental physics" (probably, IMO, not the right field, and we don't know who the expert are), "computational complexity" (the right field for some claims, but not others), or ???. If D-Wave employees are the only (otherwise) credible "experts", we could not use their statements, either. — Arthur Rubin (talk) 01:11, 27 June 2014 (UTC)

Why no mention of quantum algorithms?[edit]

The article says nothing at all about quantum algorithms. Yet a quantum computer can only run asymptotically faster than a classical computer by using a quantum algorithm such as Shor's factoring method, Grover's search method, etc. D-Wave claims that their quantum computer efficiently solves an NP-hard problem, namely quadratic unconstrained binary optimization or QUBO. However there does not currently exist any known quantum algorithm for solving NP-hard problems usefully faster than existing classical algorithms. Furthermore if any efficient quantum algorithm existed for NP-hard problems its implications for quantum computers would be vastly more profound than Shor's algorithm. Yet the article does not say anything about the quantum algorithm D-Wave is using. Something is very wrong here. Vaughan Pratt (talk) 19:02, 18 October 2013 (UTC)


The lede does not reflect the content of the article, since it summarizes the press-releases of the company and presents them as facts. The article itself is more balanced.--Ymblanter (talk) 21:59, 27 November 2013 (UTC)

Merge 2[edit]

I propose that D-Wave Two be merged into this article. What isn't a press release or a quote from a press release is not much longer than what is already here. (I haven't researched whether "Two" was split from this article. It doesn't really matter, as they should be together.) — Arthur Rubin (talk) 00:52, 27 June 2014 (UTC)

Agree. The significance or notability of the company and the systems it builds does not seem to extend to the individual models of that system. ~ J. Johnson (JJ) (talk) 20:58, 21 October 2014 (UTC)
  • Merge notability for company entangled with products. For now, per WP:SPINOFF. Widefox; talk 18:46, 1 January 2015 (UTC)