Talk:Diatomic carbon

From Wikipedia, the free encyclopedia
Jump to: navigation, search
WikiProject Physics (Rated Start-class, Mid-importance)
WikiProject icon This article is within the scope of WikiProject Physics, a collaborative effort to improve the coverage of Physics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
Start-Class article Start  This article has been rated as Start-Class on the project's quality scale.
 Mid  This article has been rated as Mid-importance on the project's importance scale.
 

Confusing!![edit]

Quote:"...molecular orbital theory shows that there are two sets of paired electrons in the sigma system (one bonding, one antibonding), and two sets of paired electrons in a degenerate pi bonding set of orbitals. This adds up to give a bond order of 2, meaning that there exists a double bond between the two carbons in a C2 molecule." "This is surprising because the MO diagram of diatomic carbon would show that there are two pi bonds and no sigma bonds." How can Molecular Orbital theory predict that the two pi orbitals are bonding (net order 2) and the sigma bonding and antibonding have no net contribution BUT the MO diagram does not show it? !!! I believe that this can NOT be correct. You just put in the sigma levels, bonding and anti and also put in the pi bonding orbitals. The statement as written can not be correct. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~π __ __ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π ↑↓ ↑↓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .~σ ↑↓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . σ ↑↓ MO Theory and Diagram must agree if done correctly, right?216.96.76.60 (talk) 19:58, 17 February 2013 (UTC)

Properties[edit]

Can it exist at room temperature? What is boiling nd melting point? — Preceding unsigned comment added by 79.191.191.243 (talk) 23:20, 23 October 2013 (UTC)

Sure it exists at room temperature. If you read the article, you'll see that due to its autoplymersation, you can't accumulate the bulk substance, and thus cannot find the boiling and melting points experimentally. Plasmic Physics (talk) 23:52, 23 October 2013 (UTC)