Talk:Diffusion

From Wikipedia, the free encyclopedia
Jump to: navigation, search
WikiProject Physics (Rated C-class, High-importance)
WikiProject icon This article is within the scope of WikiProject Physics, a collaborative effort to improve the coverage of Physics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
C-Class article C  This article has been rated as C-Class on the project's quality scale.
 High  This article has been rated as High-importance on the project's importance scale.
 

Diffusion is the movement of molecules from high free energy to low free energy (not high concentration to low concentration). —Preceding unsigned comment added by Quinlan matthews (talkcontribs) 19:35, 12 October 2010 (UTC)

Removed redirect[edit]

This page redirected to Talk:Molecular diffusion. There's relevant discussion here, but they are separate Wikipedia pages. —Alex (ASHill | talk | contribs) 20:43, 24 January 2012 (UTC)

Less technical explanation would be useful to a larger range of readers[edit]

I dont want to discourage the improvement of the technical information in the article. I think this is of great value to those who can understand it, but I would guess this to be less than 5% of the readers. I would like to see a greatly simplified qualitative description of the process, so the reader who has heard the term, but has no background in physics and is mathematically challenged, can develop an idea of what diffusion means. For example, In diving theory diffusion is an important process in decompression and decompression sickness, but most divers only need to have a qualitative gut feel for why the gas particle move one way and not the other, and why the rate changes. This level of understanding would probably be useful to a larger number of users than the mathematical analysis. Peter (Southwood) (talk): 19:20, 1 June 2012 (UTC)

Diffusion is important in thousands of processes, indeed. I just do not know how to introduce diffusion without the ideas of advection, bulk motion and diffusion flux. It may be a proper place between the historical part and the more formal parts for the explanation (for example Section "Diffusion in real life and technology"). Unfortunately, this is not my profession. I will try to continue the physical and mathematical part (and promise to try to be not too formal) and will be happy if somebody will write this "real life and technology" section. A good source of information gives the journal "Diffusion Fundamentals" http://www.uni-leipzig.de/diffusion/ -Agor153 (talk) 21:38, 1 June 2012 (UTC)
Just keep on doing what you know best. I will try to write up something that is accessible without being too wrong. Or someone else can... Formal is fine, just that in isolation it closes the door on most people. As an example, the comment higher up on this page that diffusion is the movement from high free energy to low free energy will be totally meaningless to most people, while high concentration to low concentration probably makes some sense to them. Could you check your Diffusion Fundamentals link, I got a 404 not found error. I sorted it out, a space was needed. Cheers, Peter (Southwood) (talk): 06:50, 2 June 2012 (UTC)
I feel that what you say is true... a lot of technical details. In general, however, if you say so, then I think that most of the science-related contents in Wikipedia, (and not only science but in other fields as well), a lot of the data given contain a lot of technical details. If you want to change Wikipedia to be more accessible for those with handicap in maths/science/... etc., I would say that that would require a lot of effort.

Request for information on diffusion through interface between liquids[edit]

An explanation of diffusion of a gas across the interface between two immiscible liquids would be appreciated and would add to the usefulness of the article. I am particularly interested in the case where the solubility of the gas in the two liquids is very different. Peter (Southwood) (talk): 19:23, 12 June 2012 (UTC)

OK, we can try. "Diffusion through the interface". It is very important, for example, for climate research (and not only). Perhaps, we can write it after three general sections sections, "Basic models", "Thermodynamics of diffusion" and "Diffusion in solids".-Agor153 (talk) 08:24, 13 June 2012 (UTC)
Whatever suits you best. Peter (Southwood) (talk): 13:19, 13 June 2012 (UTC)

Broken Video[edit]

The first video's broken, we might want to remove it. It's a not allowed error.

The red/blue ball animation lags out and crashes the whole browser, but that just may be my low RAM.

Cor Ferrum (talk) 22:44, 29 October 2012 (UTC)

The removal of the definition of Diffusion is an indication of the challenges STEM education faces[edit]

The definition of diffusion as the movement of a substance from a region of high concentration to a region of low concentration was the result of hundreds of years of research by scientists in many disciplines.

The removal of this definition is an utter disgrace. Moreover, the author of this page, Agor153, (I refer to them as the author as they appear to have made this page their personal mission) actually provides the very essence of the classic definition:

Consider: In Latin, "diffundere" means "to spread out". Logically, if something is "spreading out", it is moving from a region of high concentration to one of a lower concentration, i.e., it is DIFFUSING! Consider also that this very definition is illustrated in each of the three images/animations provided on the page.

How on earth is a young student supposed to grasp the most fundamental aspects of diffusion when the actual definition of the process is omitted?

Wikipedia is, unfortunately, the first port of call for many students who are trying to understand science - what chance do they have when they are met with a physics-driven personal project?

This also has knock-on effects. For example, "Facilitated Diffusion" was chosen as a term by scientists decades ago to accurately convey the mechanism for one of the most important cell transport mechanisms. The physiochemical properties of ions or molecules govern whether they can diffuse across cell membranes - from high to low concentration. Lipophobic/hydrophilic substances cannot cross the membrane due to the hydrophobic core of the phospholipid bilayer. Specialized transporter proteins (ion channels, transporter proteins) in the cell membrane "facilitate" (to make easier) the process of diffusion across the cell membrane, hence the name. However, this concept has now been lost within the facilitated diffusion wiki page as that page has also become the personal project for another user.

At this stage, I consider Wikipedia to be one of the biggest threats to STEM education due to the editing of its pages by subjective editors that show little regard for the multi-disciplinary nature of scientific discovery that led to the very definitions underpinning the titles of wiki pages.

[I'm an Associate Professor in the Departments of Physiology & Pharmacology and Large Animal Medicine at The University of Georgia; 20 years experience as a medical researcher and educator]

Dear User 96.32.136.122. I can agree that the problem of the short and correct definition of diffusion is not trivial, indeed. The short form "movement of a substance from a region of high concentration to a region of low concentration" is obviously wrong because just the flux of a gas from a region with high pressure to a region with low pressure is not diffusion but 100% satisfies your definition. You should also have in mind non-perfect media where diffusion is driven not by the gradient of concentrations but by the gradient of chemical potential and, as an extreme case, the diffusion phenomena in phase transition when they may move substances from regions of low concentration to regions of high concentration. Could I kindly recall that our expertise outside Wikipedia is not an argument [BTW, I am a full Professor in Biophysics and Applied Mathematics, 40 years experience in research and education and thousands of citations but this does not matter here :)). We have to use published reliable sources and simple general argumentation.] If you can find a general, simple and correct definition of diffusion that is applicable both for gas diffusion and spinodal decomposition and does not confuse diffusion with advection then you are more than welcome. I have spent a lot of time reading available reviews, classical textbooks and papers and have found that it seems to be impossible to define diffusion separately, without discussion of other transport processes (bulk motion). For discussion here (not in the article) I can say even more: in Reality there are the general Transport Phenomena where diffusion does not exist separately. We, for our convenience, separate diffusion from advection to study the simple and useful limit cases. Therefore, we get immediately the problem of separate definition. In any case, thank you for this important question. Perhaps, we should work further to find the proper definition for this Wikipedia article.Agor153 (talk) 12:34, 29 March 2014 (UTC)

Dear User 96.32.136.122. I can agree that the problem of the short and correct definition of diffusion is not trivial, indeed.

I fear that what you have done is to reduce this article from a resource that a student can use to grasp the fundamentals of diffusion, and turned it into something that is now only relevant to a small readership by making it a predominantly theoretical physics discussion.

The short form "movement of a substance from a region of high concentration to a region of low concentration" is obviously wrong because just the flux of a gas from a region with high pressure to a region with low pressure is not diffusion but 100% satisfies your definition.

Fluxes of gas from high to low pressure is bulk flow, thereby driven by pressure gradients, and not by concentration gradients.

You should also have in mind non-perfect media where diffusion is driven not by the gradient of concentrations but by the gradient of chemical potential and, as an extreme case, the diffusion phenomena in phase transition when they may move substances from regions of low concentration to regions of high concentration.

If something is moving from low to high concentration, then it is not diffusing, - it is not “spreading out”. — Preceding unsigned comment added by CogentEducator (talkcontribs) 21:27, 18 April 2014 (UTC) CogentEducator (talk) 22:03, 18 April 2014 (UTC)

Dear CogentEducator, you have the right to think that diffusion is what you like but you have added a wrong definition. Just the flux of gas from high density to low density is "moving from high to low concentration" but it is not diffusion. I kindly ask you to delete the wrong definition. If you like, you can read any advanced textbook. Wikipedia should be simple and clear, indeed, but it should not deliver mistakes. (BTW, you did not support your "definition" by any source. Is it your own invention?)Agor153 (talk) 01:29, 21 April 2014 (UTC)
Dear CogentEducator, your definition of gradient is also fantastic: "A gradient is the change in the value of a quantity (e.g., concentration, pressure, temperature) with the change in another variable (e.g, distance)." Where did you find such a definition?Agor153 (talk) 01:41, 21 April 2014 (UTC)
In addition, you remark "Fluxes of gas from high to low pressure is bulk flow, thereby driven by pressure gradients, and not by concentration gradients" is surprising: under constant temperature gradients of concentration and of pressure in perfect gas are proportional with a constant coefficient because P=nRT (P- pressure, n- concentration, R- constant, T- temperature). I have to ask again: where did you take your definitions? Did you invent these definitions? If you know the source, please cite!Agor153 (talk) 01:41, 21 April 2014 (UTC)

Dear Agor153, thank you for your comments, and you raise some good points. I think if we can engage in a conversation about this topic, then we (along with other contributors), can help to craft this page into a resource that can help students (of all ages).

One of the major problems students face is that the term "diffusion" is often defined differently in each class they attend (e.g., biology, physics). If you think of when a student first encounters diffusion in school (probably at age 14 or 15 in introductory classes about biology, chemistry or physics), they often turn to Wiki to research the topic. Unfortunately, I'm not sure that encountering a theoretical physics lesson is the easiest way for them to begin to understand diffusion.

The definition I gave is that most commonly given in biology textbooks. For example: http://www.ncbi.nlm.nih.gov/books/NBK21626/ http://www.ncbi.nlm.nih.gov/books/NBK21052/def-item/A5076/ http://www.ncbi.nlm.nih.gov/books/NBK9847/ and is consistent with the definition provided by resources commonly used by students to research the definitions of words, such as Merriam-Webster (a : the process whereby particles of liquids, gases, or solids intermingle as the result of their spontaneous movement caused by thermal agitation and in dissolved substances move from a region of higher to one of lower concentration), and Oxford Dictionaries (The spreading of something more widely).

The problem, as I see it, is that science disciplines often work in silo'd environments that develop their own, discipline-specific, definitions and usage of concepts. The challenge is to work together to develop a resource through which students can build their understanding of diffusion - including the discrepancies between disciplines. As a starting point, I suggest a discussion of common ground and deviations from this common ground to see if this can be achieved.

As a physiologist, my research involves real world systems that have many variables, and I have to introduce concepts from a very basic level and then add complexity. I have little knowledge of theoretical physics, so please treat me like a 14 year old student when introducing concepts (seriously!). I sincerely hope that other Wiki users will join in this conversation to help refine this Wiki page. Diffusion was identified by the American Medical Association as the most important concept for students wishing to enter biomedical careers to master. Perhaps the page can be structured to have a basic introduction and then introduce more complexity down the page such that student learning is appropriately scaffolded at each stage?

Starting points, let's try and find common ground:

Definition of Diffusion: Since the word diffusion is derived from the Latin word meaning to "spread out", then this would confine the correct use of the word "diffusion" to processes involving something moving from an area of high concentration to an area of lower concentration. Do you agree? (Let's leave the concentration vs pressure discussion until later). I would contend that any use of the word diffusion in contexts that do not involve the "spreading out" of an object (ion, molecule, idea, etc.) would be incorrect. Does theoretical physics use this term differently? (remember - treat me as a 14 year old student!)

"Diffusion": In biology, this is defined as the one I have placed into the Wiki page, and is confined to the movement of ions and molecules over short distances (e.g., across a cell membrane). Diffusion occurs because of the random motion of ions/molecules which results in the spreading out the ion/molecule, and "ceases" once the concentrations in the regions to and from which the substance is diffusing are equal (when an equilibrium is reached). The ions/molecules still move randomly, but the movement of ions/molecules in either direction is equal, so it said that there is no "net movement" of ions/molecules once an equilibrium is reached. Since the ions/molecules are still in motion, yet there is no net movement, this is referred to as being a "dynamic equilibrium". From your initial remarks, you mentioned a situation in which substances move from an area of low concentration to high (Phrase Transition?). From a perspective of the definition of the word (spreading out), the use of the term "diffusion" in this context would appear to be inappropriate. How would you modify the definition to make it a) accessible to students, and b) correct within the realm of theoretical physics?

In situations considered to be "bulk flow", this usually involves the movement of "mixtures" (e.g., air as a mixture of gases, blood as a mixture of water, marcomolecules and solutes) on a comparatively "macro" scale: air moving in and out of the body, blood moving around the body. Thus, "bulk flow" (caveat - as I and many other phsyiologists use the term) is due to differences in pressure. There are many other factors, but the difference between diffusion and bulk flow is first introduced as being differentiated by concentration gradients and pressure gradients, respectively.

"Gradient". I'm very interested to read your definition of a gradient. The most common misconception that I encounter is when students confuse "concentration differences" with "concentration gradients". The rate of diffusion (time taken to reach an equilibrium) is governed by the concentration difference and the diffusion distance (the distance between the the regions from and to which the substance is diffusing). The concentration gradient is a function of the concentration difference and diffusion distance - as plotted on a graph - and the gradient (slope) is the change in concentration over that distance (as illustrated on the wiki page for gradient). Please let me know how this definition is incorrect from your perspective?

"Random Walk/Motion". Another common misconception is that individual ions/molecules move randomly. This motion is often illustrated by a single substance (e.g., ion) moving randomly in isolation, which doesn't convey the real world. In Brown's original experiments, the movement of pollen within water appeared random, but the motion is due to collisions with the molecules within water - I have added an animation to try and help students understand this concept - is this helpful or is it misleading from your perspective? From my naive perspective, if an atom was placed into a vaccuum (with zero gravity) with kinetic energy, then it would move in a straight line until it encountered another object. As such, I think that saying atoms, ions and molecules move randomly without the caveat of why (collisions with other ions etc.) is a little misleading - would you agree?

I look forward to your comments, though I may not be able to respond quickly due to work commitments, so please edit the Wiki page as you see fit, and hopefully we (and others) can work towards a good resource for students. CogentEducator (talk) 19:21, 21 April 2014 (UTC)