Talk:Mass/Archive 4

From Wikipedia, the free encyclopedia
Jump to: navigation, search

If someone says, that he knows what is cause of gravity, he must say what is mass

The effect of the force F acting on mass M causes the same acceleration, whether it's origin is gravitation or other (electrostatic,...). Of course - if the force and mass is the same, acceleration will be the same. Equivalence principle after Galileo is misinterpretation of the law a = F / M. We only know, that gravity acts on mass and mass causes gravity - gravity and mass are interacting. Explicit constant G, the experimental number of theory, introduces the quantity of the gravitational influence generated by mass M. The real physics behind the so called Equivalence principle is the fact, that gravity causes same acceleration of two different masses in the same gravitational field (introduced by Galileo). This physical fact manifests the physical interaction between the mass and the gravitational field. That means, the gravitational interaction is proprtional to the mass of interacting object - therefore acceleration is the same. In electrostatics, interaction is also proportional to the charge of interacting object. Today no theory realy explains gravitational interaction, that means - what is mass and what is gravity. In electrostatics we don't know what is charge and what is electrostatic field - situation is the same - we know them by their proprties. Tell me - what is charge ? The fundamental difference between the charge and mass is, that the charge is conserved but mass is not. How can someone explain what is gravity, if he cannot explain what is mass ? Every such explanations are invalid. We just know how gravity works on macroscopic scale - macroscopic properties of gravity. We don't know what is the cause of gravity and what is the cause of mass. If gravity is the effect of mass, mass is the cause of gravity. If we don't know what is mass, we don't know what is cause of gravity. If we say, the cause of gravity is geometry, that means we say the mass is geometry. If we say mass is not conserved, than we say geometry is not conserved. If someone says, that he knows what is cause of gravity, he must say what is mass, or what is cause off mass. Softvision (talk) 22:18, 29 June 2009 (UTC)

This definition needs work

1. The introductory sentence structure should be simple. The single idea of this sentence should be a clear definition of the most common meaning of the word 'mass'.

Mass is a fundamental concept in physics, roughly corresponding to the intuitive idea of "how much matter there is in an object".

This sentence is too complex: i) It starts by defining mass as a 'concept'- non-existent except in the mind; ii) it then disguises this definition by cloaking it as 'an intuitive idea'- not rational or intellectual; iii) finally it declares that it is a quantitive measure of 'matter' - so not intuitive, now it is a unit of measurement. It appears to be saying that, in physics, 'mass' is a fundamental concept underpinning the whole science of physics and alludes to an intuitive estimate of the quantity of matter (undefined) that exists in an object. This is not helpful and should be re-examined with a view to changing it for a definition that is declarative, clear and unambiguous.

Anything which occupies space and has mass is known as matter.

This sentence contributes additional confusion to the definition of mass by creating a circular reference to the definition of 'matter'. Taken together, these sentences try to explain to the reader that 'mass' is a unit of quantative measure of the amount of 'matter' in an object, and the 'matter' is only matter because it occupies space and has mass (presumably as a measure of itself).

This approach only confuses the reader by piling one misconception upon another. One would imagine that 'mass', being a fundamental concept of physics, should have an elementary definition that is undisputed.

Is 'mass' a 'thing'?; does it actually exist as a substance that can be called 'matter'? Or is it a quantative measure of the amount of 'matter' expressed in units of (what)? Does it refer to the amount of interaction between matter and force? Is it a real or an imaginary object? Is it a real or imaginary action or reaction? Is it a measure of existence or a measure of behaviour?

Mass is mentioned in the definition of 'Energy' - presumably another fundamental concept in the science of physics.

Several different forms of energy, such as kinetic, potential, thermal, electromagnetic, chemical, nuclear, and mass have been defined to explain all known natural phenomena.

Note the specific reference to mass as a 'form of energy'. This would make energy a form of quantative measurement of the amount of matter in an object (if one were to combine the two definitions).

These problems need to be resolved. A simple, common and clear definition of mass (as used and understood in general) should introduce the concept. This meaning should then contribute the foundation to all further extrapolations of its meaning in physics. All manipulations and connotations applied subsequently should point back to the original meaning and thus reinforce the fundamental nature of this concept in the mind of the reader.

If 'mass' (as a fundamental concept in search of a meaning) has undergone or is undergoing a change in definition; this needs to be clarified.

"Mass", in common usage, refers to how 'heavy' or massive an object is. It appears to be independent of the density or chemical properties of the matter that constitutes its existence. One can have a massive feather that is still soft but weighs a ton and would impale a body should it be thrown with considerable force. Conversely, a pebble-sized ball of lead would appear to be innocuous until it is fired from the mussle of a rifle. Now, its density and velocity are significant in determining its behaviour - what is the significance of its mass?

GPC (talk) 04:19, 15 February 2008 (UTC)

First things first, if a theory takes mass to be a fundamental concept, then it is not going to be able to provide a definition of it. Consider, Euclidean Geometry leaves the concept of point undefined, Set Theory leaves the notion of set undefined; Physics is a language used to discuss the physical world, thus it is going to be the case that something is bound to be a basic technical term; meaning that it will be explainable only by way of analogy and other such imprecise conversation. Matter and Energy are also fundamental, indeed, so any definition of them is going to end up relying upon the others. Also, if you want a "...simple, common and clear definition of mass", then realize that you would need a theory explaining mass to get it, and that this would be in terms of simpler fundamentals; in other words, if accurate, then it would be exceedingly far from common and simple, probably would entail a theory of quantum gravity and explain the mass problem. Yet, it would still have undefined fundamental terms, thus it would simply shift the impossible burden you wish fulfiled.

Also, Mass is a form of energy, or vice versa; consider E = mc^2, the equivalence of these concepts is what makes the formula important. Finally, responding to your final comment, mass is significant since it is how the density would be determined; its like asking how the time interval and distance is significant since the velocity determines the behaviour...Phoenix1177 (talk) 03:59, 4 July 2008 (UTC)

error?

In classical mechanics, massless objects are an ill-defined concept, since applying any force to one would produce, via Newton's second law, an infinite acceleration.

I thought that dividing by zero was undefined, rather than infinity? --The Missing Piece 16:01, 2 February 2007 (UTC)

  • Yes probably, but if one were using limits and said as the denominator -> 0 (assuming the numerator is not 0 and not imaginary), the overall expression -> infinity. Though of course it never reaches infinity, since 0 is an undefined asymptote on the graph... My 2c. Of course there are branches of math that deal mathematically with "infinity." But, frankly, they're beyond me. ;o] Mgmirkin 23:15, 22 May 2007 (UTC)
No, applying any net force to a massless object would be a problem. However, as stated below, it is common to talk about massless components in a system whose other components have non-zero mass; in many cases, it is easy to see (often assumed, actually) that the net force on the massless object is zero, so there is no problem. Brian Jason Drake 07:16, 18 September 2009 (UTC)

It is common to talk about massless strings, for example, as part of a system whose other components have non-zero mass. Assuming the string to have zero mass greatly simplifies the analysis. The same applies to pulleys, as in the Atwood machine. Hope this helps. Perhaps this should be inserted in the page somewhere. Timb66 12:31, 29 May 2007 (UTC)

Another error?

The first line of the article appears to be in error, slightly. "Mass is the property of a physical object that quantifies the amount of matter and energy it is equivalent to."

My understanding was that according to Einstein's relation e=m(c^2) or m=e/(C^2) mass and energy are interchangeable but NOT matter. This seems to be a common physics error...

matter=/=mass, matter=/=energy

IE mass or energy is a PROPERTY of the matter, but NOT interchangeable with it. Or am I wrong?

Can we please clarify this? I've added a -Fact- tag until this issue is resolved. Please cite reputable sources (who know what they're talking about) on this one. Mgmirkin 22:59, 22 May 2007 (UTC)

From later in the article: "One may distinguish conceptually between three types of mass or properties called mass:

-Inertial mass is a measure of an object's resistance to changing its state of motion when a force is applied. An object with small inertial mass changes its motion more readily, and an object with large inertial mass does so less readily.

-Passive gravitational mass is a measure of the strength of an object's interaction with a gravitational field. Within the same gravitational field, an object with a smaller passive gravitational mass experiences a smaller force than an object with a larger passive gravitational mass.

-Active gravitational mass is a measure of the strength of the gravitational field due to a particular object. For example, the gravitational field that one experiences on the Moon is weaker than that of the Earth because the Moon has less active gravitational mass."

None of these points refers to "matter" or the actual "stuff" something is made of, the only refer to the "strength": of an object's resistance to acceleration, of an object's interactions with a gravitational field, of the gravitational field due to a particular object.

Appears to have nothing to do with the actual composition of the thing itself. It's simply a "property of the thing" that describes how it interacts with other things. One cannot exchange matter of energy (at least not according to what I've read), only mass for energy. Or rather mass is perhaps a form of internal energy that can be converted into a form of external energy? However, no creation or destruction of the MATTER take place.

Again, correct me if I'm wrong here. Please! Mgmirkin 23:10, 22 May 2007 (UTC)

I agree that the lead sentence could use some improvements, but I'm not sure your critique hits the right point. My understanding of what the sentence tries to say (at least before somebody inserted "and energy" in a good-faith quest to be relativistically correct) is:
Mass is a fundamental concept in physics, roughly corresponding to the intuitive idea of "how much matter there is in an object". ...
Here "matter" is not meant as a technical term, but as a reference to the everyday intuition that an object may be made up of more or less "stuff", and "mass" is the formal physical concept that is "best" at capturing that notion within the modern physical world-view. (Of course, "best" is a subjective judgement, and there is no need to invite controversy by explicitly claiming bestness in the article). For this reason I don't think matter should be linked – the target article is mostly about how it is difficult to give that word a fundamental physical definition, at least under the tacit assumption that it is to mean something different from mass. Energy should not be mentioned at all here; it is certainly needed to make concept of mass precise in the precense of relativity, but it is not a part of the intuitive notion that the concept of mass refines. The lead sentence should be useful to a reader who doesn't need or want to understand the finer points of physics, and insisting that such a reader should consider mass-energy equivalence does him a disservice without helping more technically inclined readers (who might as well be told of the energy connection later in the lead paragraph). –Henning Makholm 15:27, 26 May 2007 (UTC)

I agree with Henning Makholm on the lead sentence and will be WP:bold in editing accordingly. Timb66 12:25, 29 May 2007 (UTC)

Except that in using the word "matter" we've only made things circular, and worse. Yes, I know most dictonaries define mass losely as how much matter a thing contains. But some also define matter as how much mass a thing contains. Matter is truly impossible to define (see the wiki on it for why), and so bringing it in doesn't help. Mass is easier to define: although there are several alternative definitions in physics, at least all of them are consistant. But the only really "intuitive" definition of mass which is close to true for "ordinary objects" is how much inertia they have, or how heavy they are in a gravitational field. A semi-good definition for "ordinary objects" is "the sum of the masses of the atoms that make it up", each atom having a characteristic mass. That only leaves out small effects of binding and thermal energy and so on. And it doesn't apply to things not made of atoms (neutron stars, white dwarves, black holes), and all the other things that contribute (slightly) to the inertia of compound objects. And it only delays the problem, as there's no good intuitive reason why atoms have the mass they have (it's approximately the sum of the hadron and lepton masses, but the binding energies are now starting to get significant (a few tenths of a percent) and when you get to truly fundamental particles (quarks), the atom isn't even close to being the sum of the masses of the quarks and leptons which make it up. So you're really screwed, finally, with no "intuitive" way to describe mass from the true ground floor up. So let's not even try. We don't know what "matter" is, but we DO know more or less what "mass" is-- it is that which warps space-time. But it's a real property of things (provided we choose the definition of invariant mass), and not a thing-in-itself. SBHarris 02:09, 11 October 2007 (UTC)
Your objection seems to assume that the lead sentence should be a definition of "mass". You are right that "how much matter there is" is horribly inadequate as a definition, but a definition is not what the lead sentence should be. As you point out, it is somewhat tricky to find a definition that stands up to scientific scrutiny, and the result is likely to require advanced concepts. Therefore, a general encyclopedia should not start out by subjecting the unprepared reader by a definition! Instead of a definition then, we start by presenting a fuzzy idea of what this is all about, and try to make it more precise later in the article. We explicitly call it out as being fuzzy (with scare quotes, "roughly", "intuitive") in order to prevent anybody from thinking that it tries to be a definition, which it is not. People were thinking usefully about mass before the concepts that we would now consider essential for a proper definition of mass were even invented, and our article should remain accessible to readers who need only, say, the imperfect understanding of mass that prevailed in the 1800s.
(By the way, "that which warps space-time" would not work as a definition either; the entire stress-energy-momentum tensor warps spacetime, but "mass" is a scalar and can only account for part of the tensor, no matter how we twist the definition). –Henning Makholm 11:45, 27 October 2007 (UTC)

Mass: Electromagnetic inertia, quantum polarization, elementary particles as tiny black holes, Higgs bosons, gravity of the whole universe causing local inertia, Lorentz invariant property, etc.

The above title pretty well sums up B.K. Ridley's take on the possible sources of "inertial mass" (i.e. mass in general). He discusses these in his Time, Space and Things 3rd Edition, Canto-- Cambridge University Press, (1976, 1984, 1994), ISBN 0 521 48486 3 paperback, asks the question: "What is inertial mass" (Chapter 8 Mass, pp. 133ff).

He starts out with a discussion the to the electron in motion and points out that the moving electron creates a magnetic field and this is in part responsible for its increased mass:

"Working out the magnetic-field energy of a moving electron, we come to the conclusion that the fraction of inertial mass which can be confidenlty taken to be of electromagetic origin is 1/137 . . .
"At least some part of inertia is of electromagnetic origin. What about the rest?" (p. 136)

He then discusses the possibility that the moving electron is "retarded" by spontaneous generation of a sea of quantum vacuum-fluctations:

"Bubbling around the electron is a seething mass of virtual electron-positron pairs" (p. 138)

But all this jiggling (positive energy) and the electron's spin (negative energy) cancel out (p. 138). So where does he look for the rest of the inertia?

"There are three choices, the strong interaction, the weak interaction, and gravitation . . . The idea that inertia is something to do with the drag of a field is too good to let go. . . it is natural to see the field acting as a thing to be lugged about when the particle moves."(p. 138-139)

Ridley introduces the Higgs boson as the "mass field", ". . . a quantum field which inhabits the whoe of space just as the electromagnetic field does. Mass comes about through the body interacting with this field." (p. 139)

But Ridley moves on quickly to closer look at gravity:

"But the intimiate connection between mass and gravity is a strong indication that the most basic source of inertial mass is ultimately to be found in the most evident of all interatctions, gravitation.
"It all stems from what Einstein has called the principle of equivalence." (p. 139)
"The equivalence of pure gravitation and an appropriate acceleration leads to bizarre predictions." (p. 141)

He explores both extremes of size. First he shrinks the gravitational potential until it collapses: "Such entities are called black holes" (p. 142). He concludes that "The gravitational radius for the electron is about 10^-57 m" and he can't quite bring himself to believe that electrons are tiny black holes of pure gravitation:

". . . our imaginations whould have to be fortified to embrace the description of the electron as a negatively charged black hole."

So he goes to the other extreme -- the entire universe -- and introduces the notion that the gravitation of the entire universe is responsible for inertial mass:

"But no one has yet produced a fully satisfactory theory of inertial mass based upon the influence of matter in the rest of the Universe, although Sciama has offered a simple model."

he describes Sciama's model invoving gravitational-inertial waves emitted by a moving particle:

"What a remarkable idea, that when you accelerate into a run, your msucles are fighting the influence of galaxies scarcely visibe even with the most powerful telescopes!" (p. 149)

He ends with:

"In these fundamental problems matter in the largest and smallest scales is involved, and one cannot avoid the feeling that there exists a strong skein in the substratum of nature, which connects the size of the Universe to the size of elementary particles. One day this skein will be unravelled." (p. 149)

The above probably sums up about all that is truly "known" (in the form of hypotheses) about what mass really is, or derives from. However, there are some subtle and important points to be found in a second book by Marc Lange, (2002) An Introduction to the Philosophy of Physics: Locality, Fields, Energy, and Mass, Blackwell Publishing, Oxford UK. He points out that mass and energy are not really the same thing at all:

"This "equivalence" does not mean that energy really is' mass. It means only that when a certain amount of mass Δm disappears, the equivaent amount of energy (the amount for which it is exchanged, the amount that takes its place) is (Δm)c^2. This does not show that mass is the same thing as energy or even that the mass gets turned into energy -- only that when one disappears, the other replaces it." (p. 226)

He points out that in fact mass is "real" and energy is not, because mass is "Lorentz-invariant" (the same measured in one inertial frame to another inertial frame -- here's an example (I hope I've got it right). I am in a rocket going close to the speed of light relative to you on earth. I weigh my pocket calculator -- 0.1 kilogram. because I am moving really fast relative to you, you would say that it has an apparent mass (equivalent mass of) about 10x this, for a total "mass" of 0.1+10*.01. But almost all of this extra is "energy of motion" as opposed to the intrinsic mass of 0.1 kg, which remains "invariant". If my calculator were to crash into the fixed frame (i.e. earth) it would give off one hell of a bang (its kinetic energy 1/2mv^2) but the remanents afterwards would still be 0.1 kilogram of dust):

"In fact, howevr, it is mass rather than energy that is Lorentz-invariant.
"The reality of fields, and hence spatiotemporal locality, will turn on properly interpreting mass in relativity theory." (p. 228)

After quite a discussion, and taking exception with statements from common physics texts, he concludes that

"Mass is a real property whereas energy is not. Mass is no more a form of energy than it is a form of momentum. Energy and mass are not two sides of the same coin in the manner of E and B (as we found in chapter 7 [E is the electric field, B is the magnetic field]); a body's combination of energy and momentum in a given frame reflects its mass and that frame.
"Energy, like mass, is a conserved quantity. The explosion [of an atomic bomb] redistributed energy within the system. In so doing, it turned some energy associated with masses of the system's constituents (mc^2) into other forms of energy, such as heat. . . . But this does not mean that the system's total mass diminished." (p. 240)

Likewise, for fields: ". . . the field has mass, a real (Lorentz-invariant) property, [so] the field is real." He is presupposing his previous assertion that "energy and momentum are frame-dependent, and hence unreal."(p. 247).

"In sum: When we think of the deuterium nucleus as a system of bodies rather than as a single body, we must ascribe masses not ony to the proton and neutron, but also to the field. The masses of the proton and neutron in the deuterium nucleus are not their masses in isolation (which reflect not just the "bare" particles, but also their fieds). A body's energy is mc^2 plus its kinetic energy, without a potential energy term, because that potential energy is ascribed to the field." p. 246
"A field is not made of energy any more than it is made of momentum. Since matter is not some sort of stuff, a field is not made of matter either. But if matter is defined as anything with mass, then a field is matter. Since the electromagnetic field has mass, the field is ontologically on a par with bodies . . ." (p. 247)

Although this book is much harder than Ridley's they both seem to associate "fields" (in particular gravity) and "mass" in some yet-to-be explained manner. He delves into "invariance" in some depth. He concludes that the speed of light c is invariant, mass is invariant as noted above, and so is what he calls "the spatiotemporal interval between two events":

"If Δs is the distance between two events relative to a certain inertial frame and Δt is the span of time separating them in that frame, then I = (cΔt)^2 - (Δs)^2." (p. 219)

This stuff is hard, and I'm not sure that anyone but a specialist can do it justice. But if we can figure out how to assimilate it and get it into the article the article would reflect more accurately what is known about mass at a "deep" level. wvbaileyWvbailey 17:30, 7 June 2007 (UTC)

Wikilinking matter

Can we wikilink matter as matter? --69.150.163.1 21:42, 11 September 2007 (UTC)

I'd prefer not to -- see my comments on the matter in the "Another error?" section above. –Henning Makholm 00:21, 12 September 2007 (UTC)
No! Matter is impossible to define, and bringing it in, even as a word, doesn't help at all. See the matter wiki for why.SBHarris 02:14, 11 October 2007 (UTC)

False and/or misleading weight paragraph

I had to edit the following text because it was false and misleading on several fronts:

  1. There is nothing "incorrectly" about it
  2. There is nothing "informal" about it
  3. The improper bold emphasis on the first weight is related to the first two points
  4. The linking of the second "weight" rather than the first one was deceptive, probably inadvertently so
  5. The scope of the second clause is actually narrower,
    1. It applies to the branch of physics called mechanics
    2. The "strictly" is also not exactly correct in actual usage, though I have left it for now while considering whether rephrasing is needed

Gene Nygaard 14:17, 23 October 2007 (UTC)

That weight is not used incorrectly

  1. We are measuring exactly what we want to measure.
  2. We are calling it what we've called it for over a thousand years.
  3. Fortunately, nobody ever gave your physics teacher any say-so as to what "net weight 15 oz (425 g)" means on a can of beans. Nor as to the meaning of weight for a 401.23 ounce bar of platinum.

Gene Nygaard 14:17, 23 October 2007 (UTC)

There is nothing informal about that usage of weight

  • Nobody ever talks about net weight with weight having anything other than mass. This isn't "physics and engineering" terminology.
  • Nobody ever talks about troy weight of a bar of platinum with weight having anything other than mass.
  • Nobody ever talks about carat weight of a diamond with weight having anything other than mass.
  • Nobody ever talks about molecular weight of NaCl with weight having anything other than mass.
  • Nobody ever talks about body weight of a rodent with weight having anything other than mass.
  • In the medical sciences, the particular body weight discussed at human weight means mass; it is only in planetaria, physics textbooks, and a number of web sites where the word weight is used to mean force due to gravity in this context, often without ever explaining where you are going to put your scale to weigh yourself as you float on the cloudtops of Saturn, nor how you are going to float there where the atmosphere is about three-fourths that on the surface of the Earth, nor what effect it would have on the scale's if you were indeed floating.
    • All around the world, including many hospitals in the United States, we measure this weight in kilograms, and they are indeed the proper units for this purpose.
    • There is no stone-force, never has been. Unlike the kilogram-force and the pound force, no force unit has ever been spun off from this unit of mass. Nonetheless, our Wikipedia article is at stone (weight).
    • Nobody ever talks about curb weight of an automobile with weight having anything other than mass, especially not those who call it kerb weight.
  • And on and on and on. Is it okay if I stop now? I will, anyway.

Not only is the word weight used in these contexts, but in some cases it is actually legally required to be used. Now that's certainly not "informal". For example, most food sold in the Unites States that is not sold by volume must have a label which must contain either the word "weight" or the specific abbreviation "wt". [21 CFR 101.105] Gene Nygaard 14:17, 23 October 2007 (UTC)

Weight is not the same as mass, weight is mass pulled down by gravity (measured in Newtons, N), the mass of an orange is about 100g on earth, on th moon, it is 100g. If you were to weigh it, on earth, an orange weighs 980 N (100 • 9.8 = 980 N), while pn the moon, an orange would weigh 160 N (100 • 1.6 = 160 N). Weight is measured by scale, using the mass of object and gravitational force of the earth, then reversing the calculaton, (using division), to come up with a approximitive awnser.Mass is measured with a balance, (single, double, triple beam), that gets an exact awnser. Androo123 (talk) 01:45, 1 February 2008 (UTC)

Mis-linking related to misunderstanding of scope of Wikipedia weight article

Usually, not much can be made of the fact that it isn't the first use of a word which is linked, but one farther down the page. In most cases, all that needs to be done is move it up to the top of the page.

In this case, however, my guess so far (will correct this if I find out otherwise) is that that wording was added all at once, and linked that way by the original contributor.

That is misleading and related to the other problems mentioned above. It was likely intentionally done that way, and intentionally meant to distinguish the usage characterized as "informal" and "incorrect" from the true, God-given meaning of this word. But I don't think it was intentionally meant to deceive.

Rather, my guess is that the originally contributor failed to understand the scope of the linked article, failed to realize that our article at weight deals with the first meaning mentioned, as well as the second one:

  • In fact, the vast majority of the links to that article come from references to weight where its meaning is equivalent to the mass covered in this article. My informed guess is that less than 10% of the incoming links deal with weight meaning "force due to gravity", based in large part on my looking into it in some detail a long time ago and reporting about that at Talk:weight.

Gene Nygaard 14:17, 23 October 2007 (UTC)

Reply

The paragraph stood for a long time with the following content

In informal everyday usage, mass is more commonly referred to as weight, but in physics and engineering, weight strictly means the size of the gravitational pull on the object; that is, how heavy it is, measured in units of force. In everyday situations, the mass of an object is proportional to its weight, which usually makes it unproblematic to use the same word for both. Distinguishing them becomes important for measurements with a precision better than a few percent, due to slight differences in the strength of the Earth's gravitational field at different places, and is essential when one considers places far from the surface of the Earth, such as in space or on other planets.

I created most of that wording, studiously avoiding any implication it is "incorrect" to use the word "weight" for mass. In this form the first use of "weight" is bolded, because it presents a synonym for this article's title. The second use of "weight" is linked because its target article clearly presents the "weight-as-force" meaning (which is a fact about that article's content even though most of the links possibly ought to point here instead). The point of the paragraph was exactly to prevent overzealous editors from inserting "MASS IS TOTALLY DIFERENT FROM WEIGHT YOU DIMWITS" statements, while still acknowledging that one sometimes need to distinguish between the two meanings. This worked well until an anonymous editor inserted "incorrectly" a few days ago, while also completely garbling the description of the weight-as-force meaning and removing the subsequent balancing discussion.

I would prefer reverting to the version I quoted above, but edited to take into account some of your objections that still apply to it:

In many contexts, mass is more commonly referred to as weight, but in mechanics the word weight strictly means the size of the gravitational pull on the object; that is, how heavy it is, measured in units of force. In everyday situations, the mass of an object is proportional to its weight, which usually makes it unproblematic to use the same word for both. Distinguishing them becomes important for measurements with a precision better than a few percent, due to slight differences in the strength of the Earth's gravitational field at different places, and is essential when one considers places far from the surface of the Earth, such as in space or on other planets.

However, I do not agree that the Weight article as it currently stands is an appropriate link target for weight-when-synonymous-with-mass. –Henning Makholm 14:59, 23 October 2007 (UTC)

Distinguishing them (them meaning, of course, mass vs. force, the things we ought to be distinguishing) is every bit as important for that 401.23 troy ounce bar of platinum. The "unproblematic" language glosses over that. We are measuring what we want to measure, and we are calling it "weight" just as we have for ages. It does mean mass; the fact that some who have been mistrained in their physics clases or whatever into believing that is this context it also means force should not be encouraged in that misbelief. Gene Nygaard 15:08, 23 October 2007 (UTC)
What it really boils down to is a poor choice of a word to use, when the physicists were shopping around for a term to use in their jargon, for the force due to gravity. Gene Nygaard 15:14, 23 October 2007 (UTC)
It also would not be appropriate for the majority of the links to weight to link here as some sort of Easter egg surprise, either. Many readers might just say, "Oh, another bad link" and say to hell with it. Gene Nygaard 15:35, 23 October 2007 (UTC)


Disruptive edits

Makholm: I (User: Greg L) placed the following post on Talk:Kilogram regarding Gene Nygard’s flagrant disregard for the facts. Please e-mail me or contact me on my talk page as to what we are going to have to do about this. Greg L (my talk) Here’s the post:

Gene. I’ve tried to be patient but your continued edits trying to change accepted facts in physics are becoming disruptive. Encyclopedia Britannica very simply defines “weight” as “[the] gravitational force of attraction on an object, caused by the presence of a massive second object, such as the Earth or Moon.” Wikipedia’s Weight article defines weight as follows: In the physical sciences, weight is a measurement of the gravitational force acting on an object. World Book (print edition) says this under Weight: Weight is the gravitational force put forth on an object by the planet on which the object is located. Further, the Kilogram article adheres perfectly to Encyclopedia Britannica’s discussion of the distinction between “weight” and “mass”. The article also gives proper and fair treatment to the fact that the term “weight” in common vernacular can occasionally mean “mass.”

With regard to Encyclopedia Britannica’s article on weight you’ve written here that we shouldn’t “stoop” to their level and you’ve also written that Wikipedia’s own article on weight, which is linked to in several places in this article can’t be trusted. Other editors besides me have made edits that counter yours. I’ve leaned over backwards and several parenthetical instances of “(force due to gravity)” have been placed after various instances of “weight” to help the reader understand the point. These parenthetical explanations go far beyond other encyclopedic treatments; my print edition of World Book doesn’t even mention that “weight" may sometimes mean “mass” in common vernacular. In light of these realities, which were carefully explained to you above, you’re placement of a “factual dispute” tag on this article just because you aren't getting your way borders on vandalism. I see from your edits and arguments in places like Talk:Mass and in various areas of the Weight article, that you’ve take up the cause there, trying to redefine the commonly accepted usage of the term to “force due to gravity.” Your continued edits to change reality are without foundation and are disruptive. You’ve been warned. Greg L (my talk) 16:28, 23 October 2007 (UTC)

I agree with the comments by Greg L. Timb66 16:33, 23 October 2007 (UTC)

Thank you for taking the time to post your comment Tim. The fact that you are a professor of astrophysics at the School of Physics, University of Sydney lends great credibility. Greg L (my talk) 16:59, 23 October 2007 (UTC)
Gee. Now, instead of addressing the issues that have been raised, we get appeals to authority (not by Timb66 but by Greg L). For starters now, Greg, maybe you could explain how, even if that is true, it gives him or her any special expertise as to what either "WT" (weight) or "kg" (kilograms) (or for that matter, LB (pounds)) mean on my bag of sugar:
  • NET WT 10 LB 4.54 kg
Who exactly gave Timb66 some say-so in that regard? Gene Nygaard 17:46, 23 October 2007 (UTC)
Gene, Your arguments are circuitous beyond reason and too much of my time has been spent dealing with you on this. This issue you raised above is clearly explained here in the Kilogram article, where it says

In everyday use, given that all masses on Earth have weight and this relationship is usually highly proportional, “weight” often serves to describe both properties, its meaning being dependent upon context. For example, the “net weight” of retail products, which may be given in pounds (U.S.) and kilograms, refers to mass (see also Pound: Use in commerce).

We’ve gone through all of this and the Kilogram article is clear. It expands on the exceptions to an extent that goes well beyond that in other encyclopedias, some of which don't even give lip service to the exceptions and adhere strictly to the meaning of “weight” as understood in the physical sciences. Your arguments that three encyclopedias treat the subject of “weight” incorrectly and everything should be revised to conform with your views on the matter are without foundation. Greg L (my talk) 18:07, 23 October 2007 (UTC)
Greg, your World Book also claims that pounds are not units of mass, does it not? Mine tells me that "The inch-pound system measures the weight of various materials. . . . The metric system measures mass (amount of material something contains)."
Drat, are you going to start the WP:AfD on pound (mass), or are you going to make me do it? Gene Nygaard 18:16, 23 October 2007 (UTC)
Double drat! Forgot about the AfD on newton and dyne as well. Gene Nygaard 18:23, 23 October 2007 (UTC)
Gene, your facetious (3. lacking serious intent; concerned with something nonessential, amusing, or frivolous) comments are entirely beside the point. In any proper article dealing 1) with the physical sciences, and 2) with “mass”, “weight”, and the difference between them, “weight” is “gravitational force”. Period. Encyclopedia Britannica very simply defines “weight” as “[the] gravitational force of attraction on an object, caused by the presence of a massive second object, such as the Earth or Moon.” Wikipedia’s Weight article defines weight as follows: In the physical sciences, weight is a measurement of the gravitational force acting on an object. World Book (print edition) says this under Weight: Weight is the gravitational force put forth on an object by the planet on which the object is located. All three of these encyclopedias are correct and you are wrong. Your raising of the issue of “net weight”—something brought up in the Kilogram article and which you had to have known about—amounts to nothing more than disingenuous attempt to seize a virtue of that article and try to turn it around to your own advantage in an effort to divert from the real issue. I’d very much like to have simply addressed logical, scientific points with you but that seems impossible since you refuse to accept the reality of a proper encyclopedic treatment of the subject and instead resort to nonsense. Stop harassing other editors over this issue because your position is without proper foundation. Greg L (my talk) 19:28, 23 October 2007 (UTC)

A new attempt at clarification

(Outdent.) Um, this looks like the middle of a long ongoing argument, and it is difficult for a newcomer to see what the basic disagreement is about. My eyes start to glaze over when I see long paragraphs with more emphasized text (of several kinds) than plain text. Instead, let me try to argue from first principles how I think we ought to handle the case. For the purpose of focusing the discussion, I would be interested in hearing which steps, if any, we cannot all agree on:

(1) According to science, the mass of a body ("M", measured in kilograms) and the size of the force exerted on the body by gravity ("F", measured in newtons) are separate, distinct concepts. Both are valid and useful.
(2) Under various common assumptions that it would be tedious to repeat at each step in the discussion, M and F are, to a good first approximation, proportional to each other. Thus:
(2a) Pre-SI units of force were often derived from units of mass (pound-force, kilopond) and in all but the most formal speaking identified with the underlying mass unit (effectively non-dimensionalizing g to 1).
(2b) Practical devices intended to measure M actually react to F and convert to M-values either by a fixed calibration or by comparing it to the F of reference objects with known M.
(3) Even before M and F was recognized as being distinct, people were aware that some intrinsic (hence somewhat like M) "how-much-ness" of things could be quantified by measuring their "heavy-ness" (hence somewhat like F). "Weight" referred to this assumed single concept.
(4) In informal everyday language the word "weight" continues to denote an idea of how-much-ness that does not distinguish between M or F (though it is clearly distinct from, say, volume).
(4a) This is not problematic or incorrect within the domain of informal everyday language.
(5) In some contexts the word "weight" refers specifically to M. (Gene Nygaard makes a good case that commerce an example of this).
(5a) This is not problematic or incorrect within the scope of those contexts.
(5b) A typical feature of such contexts is that F is not considered a relevant quantity to speak about at all (except as a way to measure M).
(6) In some contexts the word "weight" refers specifically to F.
(6a) This is not problematic or incorrect within the scope of those contexts.
(6b) Such contexts include all cases where M and F are both potentially relevant quantities and a way to specify which one one speaks about is needed.
(7) As an encyclopedia that strives towards a neutral point of view, Wikipedia should not imply that one of the senses (4), (5), (6) is an objectively (i.e. when no particular context is given) more correct meaning of "weight".
(8) The concept M has a name "mass" which is unambiguous in all context; therefore our encyclopedic treatment of M should be in the mass article.
(8a) It is encyclopedically relevant in this article to present "weight" as a word that sometimes denotes M, and give a short capsule summary of why this is not always the case, with a link to a fuller discussion.
(8b) The fuller discussion is probably best placed in the weight article. Weight (disambiguation) is not an appropriate place for discussion, per the Manual of Style (disambiguation pages).
(9) The concept F has no other short name than "weight", so our encyclopedic treatment of it should go in the weight article, even though "weight" when stripped of context is ambiguous.
(10) Wikilinks from the word "weight" in other articles where the intended meaning is M should be (pipe-)disambiguated to the article about M, namely mass. The presence of an unlinked boldface weight in the lead section lets the reader quickly locate the word he clicked on, and find an explanation of why the link was piped.

Okay, I can see from the above the Gene Nygaard disagrees with (10). But surely that disagreement must arise from a more fundamental disagreement earlier on. I'm not certain what it is, though... –Henning Makholm 02:29, 27 October 2007 (UTC)

I'll address some of your points. It would be clearer if you italicized your variables, and even then use m rather than M for mass (yes, M is sometimes used, but usually only when there are two masses and they are distinguished by using uppercase for one and lowercase for the other (G is proportional to mM/r). I'll use m here.
1. No. Unless you are talking about the science of linguistics, the meaning of a word is not "according to" science, and even in linguistics, it wouldn't be the proper terminology. Scientists may well use a number of words with specialized meanings within the jargon of a narrow brance of the broad thing called "science", but that is a different story.
Otherwise, the rest of 1) following the introductory clause is okay by me.
2. Okay for talk page purposes only, and only when the context clearly is limited to Earth either explicitly or because the nature of the discussion precludes otherwise
4. It isn't "informal".
7. That summary of your points 4, 5, 6 is pretty reasonable.
8. No. Many people are more familiar with the "mass" used in a body-building context. Or with the some bigness, volume, field-of-view idea associated with the term "massive" in everyday usage. I just recently saw someone else change an astronomy-related article which talked about something about "massive objects" to make the intended meaning less ambiguous by saying "objects that have mass. In that particular case, using mass insteat was an improvement, but mass is an ambiguous word, too. It is less problematic than weight primarily because its other meanings are usually not associated with measurements involving specific numbers. But there are still times when the meaning needs to be made clear.
9. First, the concept represented by F is much broader than weight in anybody's book. Many of the disputes in various articles arise because people insist on using the word weight in connection with something that applies to force from other causes as well (and were we to adopt your argument, "force" is shorter than "weight", but see my third point here). Second, the fact that mass is indeed the quantity that we normally call weight in many contexts is quite important to this article, something that will help readers bridge the gap between what they already know. Third, we don't choose our terminology so that we always use the shortest word or phrase possible.
10. There's a reason mass isn't used in those articles, and that's probably a good reason not to send it here. Your proposal sounds to be like a devious first step in trying to remove the most common usage of the word weight from its own article. If you want to spin off a new article at Weight (mechanics) and move the handful of incoming links to weight which should go there to their appropriate new article, I'll listen to your arguments, though on initial impression I wouldn't be likely to favor that either. Gene Nygaard 13:34, 27 October 2007 (UTC)
(1) I fail to understand your objection. The point speaks not about words at all; it merely introduces two concepts and introduces the (deliberately non-standard) abbreviations M and F to refer to the concepts in the following discussion. What has that got to do with linguistics?
(2) This is a talk page. As I said: We do not need to repeat those assumptions in each comment; we all know what they are.
(4) The point makes a claim about informal language. It makes no claim at all about language that is not informal. Are you claiming that the point I make about informal language is an untrue statement about informal language?
(7) Good. It did look like you were suggesting that F should be considered a second-class or fringe meaning of "weight", but I accept your statement to the contrary.
(8) When "mass" is used in a body-building context, does it mean anything different from M? Similarly for the astronomy example; "objects that have mass" would seem to refer to M, too.
(9) First: It surprises me that you think that F is broader than "weight". Can you give an example of a sense of F that does not fall under a possible meaning of "weight"? Recall that the concept I denote by F is not just force in general but specifically the size of the gravitational force on a body. Second: Yes, that is why I support telling in mass that "weight" often means this, too, as described in (8a). Third: We chose our article titles as the common term for the subject we write about, and there is no other common names for the concept F. (Various longer descriptive phrases that one might think up are not common terms for the concept, and hence not good article titles).
(10) Please do not assume bad faith. I note that your theory about my supposed hidden motives is directly contradicted by (8b), and decline to argue further about what I want or do not want (upon which subject I do consider myself the supreme authority). –Henning Makholm 14:25, 27 October 2007 (UTC)
(1) I am objecting to "According to science". Science doesn't determine the meaning of ambiguous words. What you are taling about is probably better characterized as "in common usage in the physical sciences" or something along those lines. Science can be used to analyze what a gold trader means when he talks about the troy weight of a 400 oz gold bar, and the combination of common sense and the physics in that case requires that weight means what you are calling mass. In other words, what I'm objecting to the notion that just because there are two concepts that are distinguishable in science, it is not "according to science" that particular wording is often used in the jargon specific to that branch of science to describe those two concepts. The meaning of your statement is much clearer and less objectionable, if you simply drop that introductory clause.
(2) How we "handle the case" includes what we put in the article as well. I was just pointing out that what you said may help us in focusing the discussion here, but it isn't necessarily phrasing that is polished enough or relevant enough for inclusion in the article.
(4) Under that interpretation, my objection would of course be that the phrasing is deceptive and misleading, and likely to be interpreted differently from what you intended. Its "truth" in that overliteral (and problematic even in a strictly literal sense) doesn't matter; most people are going to see this as a claim that the usage described by you is always "informal usage". And you've repeated that phrase again in 4a, hiding the fact that, using the same reasoning you have used, it is every bit as much true that "This is not problematic or incorrect within the domain of formal language", yet I doubt you'd agree to that wording.
(8) Yes, it does mean something different. Exactly what, I'd be hard pressed to explain.
(9)I don't understand you at all there. We use F = ma in connection with the force exerted by a rocket engine, let's say it is 175 kilonewtons for our example. That force F = 175 kN is not ever called "weight" in anybody's book. But it still accelerates a mass (the very thing we should be talking about in this article about mass with that meaning). It is most often called "thrust". We use F for the tension on a bicycle spoke or on a piano wire. Neither of those forces is ever called "weight" in anybody's book. I understand your point about you having specifically limited yourself to a particular kind of force for which you are using he symbol F; the problem is that this is the vary same symbol used in general with a broader meaning. Others participating in the discussion, or if that were put in the text of the article, others reading the article, aren't likely to interpret it the same way (even if they see your specific definition of how you are using it, they're likely to gloss over it like I did). Something like that may be acceptable a formula set off from the text and followed by a "where x means ..." explanation, but not in this context.
(10)Maybe I went overboard there, with respect to the motives of "you" as an individual, and I have no reason to believe that this was your personal intention. When I talked about the "first step," I wasn't thinking that you would be someone likely to take the "next step". But someone would. Because of that, I cannot accept what you said as an agreed-upon principle, primarily on the basis that somebody, sometime is virtually certain to interpret it exactly that way. So I apologize for wording it as directed specifically at your intentions, and hope this helps clarify what I meant. Gene Nygaard 15:46, 27 October 2007 (UTC)
(1) Again, the text you are objecting to does not attempt to determine the meaning of any word, neither does it claim that science is determining the meaning of word. It simply presents concepts, explicitly without speaking about which words apply to them. Your objection still makes no sense to me.
(2) What I wrote is an attempt to focus the discussion here on the talk page. None of it is intended to be moved to article-space with its current wording.
(4) Indeed I do not agree that any word in contemporary formal language can mean a concept that does not distinguish between F and M. I am trying to discover which facts we can agree on. I would be counterproductive to extend it to something that I know we cannot agree on at this point. I do not understand how you think this is "deceptive and misleading" - who would it deceive?
(9) It seems that you are objecting to my use of abbreviations rather than to what I am actually saying. Very well - I invite you to suggest a pair of neutral shorthands that we can use (limited to this discussion on the talk page) to speak about the two concepts, without presupposing any conclusions about which one better matches the word "weight". Then we can start over from the beginning. There is no hope of reaching a consensus until we can agree to use a common language in which to express a consensus among ourselves.
(10). Apology accepted. However, I think your argument here just begs the question – it assumes that there is a predetermined truth about which concepts must be treated under which article titles, within what is supposed to be a reasoned discussion about which article titles should be treated under which article titles. –Henning Makholm 20:18, 28 October 2007 (UTC)

(9) Henning is using F to mean force due to gravity. It would be better to use W instead of F. Then it would be obvious that the examples given by Gene (thrust, etc.) are not relevant. Timb66 16:13, 27 October 2007 (UTC)

W was my initial thought, but I feared that Gene would object to the "force-of-gravity" meaning getting first choice of the initial letter of "weight". If everybody can live with calling it W, I'll happily change it. Or we could call it Q or Z. Just so we can move on without geting bogged down in meta-discussions about which terms to use during the discussion. (I would prefer not to italicize the letter, however. It is not intended as an algebraic variable, but an "editorial" abbreviation for a bit of cumbersome prose. Still, I apparently have to emphasize, only to be used in the talk page discussion while we agree about how to express things in the article). –Henning Makholm 20:18, 28 October 2007 (UTC)
I agree, except for one factor. It's probably going to be used in a context where F with the general meaning is more appropriate than W in the more specific meaning. Gene Nygaard 17:26, 27 October 2007 (UTC)
I don't understand this comment. Gene seems to be raising objections for the sake of it. This is not a difficult concept, why has it become so difficult? Please can we move on? Timb66 20:22, 27 October 2007 (UTC)

Ok... not a scientist... Net weight - bag of sugar... the weight of the sugar contained in the bag ("net" meaning the weight of the product without the product's container). Don. —Preceding unsigned comment added by Fishgolf (talkcontribs) 02:15, 8 February 2009 (UTC)

“Mass versus weight” article

The subject of “mass vs. weight” is currently being discussed at Talk:Kilogram: Location for “Mass versus weight”. A consensus has been so far achieved that the section Kilogram#Mass versus weight should be moved out of Kilogram. Consideration is being given as to where to move it to. Options are to move it to Mass, or to Weight, or to give it its own article, Mass versus weight that all other articles can link to. If you would like to express an opinion on this matter, please click here. Greg L (my talk) 22:23, 8 November 2007 (UTC)
Nice to see you are admitting that I was correct in labeling that section as disputed at the kilogram article. Since you are now claiming that dispute is resolved, have you removed the inappropriate content from Kilogram? -- Gene Nygaard (talk) 17:37, 16 November 2007 (UTC)

Higgs Boson or Mass Field

"the equality of inertial and active gravitational mass [...] remains as puzzling as ever".

Open Source (Vacuum Gravity and Inertial Forces) Project: http://www.wiki1.net/groups/pmwiki.php?n=BigCrash.Inertia

If you that gravity around massive objects is a curvature of space accelerating matter toward the massive object, and you accept vacuum energy, then very dense vacuum energy might be expected to generate the same curvature of space accelerating matter toward the dense energy (accelerate elemental particles outward in all directions, felt as resistance to change in motion, see proposed mechanics and math at BigCrash.org > Inertia) --Jtankers (talk) 12:51, 25 April 2008 (UTC)

... Because (astronomical) vacuum gravity force would only act on the smallest particles of matter, possibly quarks, ... seems to indicate that the force may be repulsive with respect to particles/fluctuations that are energy only and only travel at the speed of light. (A fluctuation is strongly pushed by vacuum energy... such a force might require light speed of massless particles. This push force on energy may also push strongly on vibrating strings of energy, possibly folding them into ... every possible bit of empty space. The pull force on matter particles should have the effect of giving the matter particle its size, pulling the quark to the radius that a quark is measured to be, and resisting change in motion, causing inertial forces. --Jtankers (talk) 12:51, 25 April 2008 (UTC)

Quarks aren't measured to have ANY radius. No "elementary particle" (quark, lepton, vector boson) has yet been found to have a radius or a "size." SBHarris 19:00, 16 October 2008 (UTC)

Origin of Mass -- The Abstract

More than 99% of the mass of the visible universe is made up of protons and neutrons. Both particles are much heavier than their quark and gluon constituents, and the Standard Model of particle physics should explain this difference. We present a full ab initio calculation of the masses of protons, neutrons, and other light hadrons, using lattice quantum chromodynamics. Pion masses down to 190 mega–electron volts are used to extrapolate to the physical point, with lattice sizes of approximately four times the inverse pion mass. Three lattice spacings are used for a continuum extrapolation. Our results completely agree with experimental observations and represent a quantitative confirmation of this aspect of the Standard Model with fully controlled uncertainties.


Science 322, 1224 (2008); S. Dürr, et al. Ab Initio Determination of Light Hadron Masses


--151.200.247.100 (talk) 07:47, 3 January 2009 (UTC)

What happened to the relativity sections?

Article now reads:

Now, suppose that the mass of the body in question is a constant. This assumption, known as the conservation of mass, rests on the ideas that (i) mass is a measure of the amount of matter contained in a body, and (ii) matter can never be created or destroyed, only split up or recombined. These are very reasonable assumptions for everyday objects, though, as we will see, mass can indeed be created or destroyed when we take special relativity into account.

This is simply wrong! Both relativistic mass and invariant mass are conserved in closed systems over time. "Matter" might be created or destroyed (depending on how you define it), but mass is not. If energy is conserved, mass must be also. SBHarris 00:54, 5 February 2009 (UTC)

It's speaking of rest mass, not invariant/relativistic mass.Headbomb {ταλκκοντριβς – WP Physics} 03:09, 5 February 2009 (UTC)
What is the rest mass of a system? The only answer that make sense is the system invariant mass, since nothing else can be measured (or defined). So rest mass (by any rigorous definition of "rest mass") is conserved in isolated systems. It is not created, nor destroyed.

Now, please don't tell me that the "rest mass" of a 2-photon system is undefined, and because it's undefined, it's not conserved. That only means we shouldn't use the term "rest mass" when we talk about systems (even though we must talk about the mass of systems, ergo we must use another definition of mass). For single particles, rest mass is obviously conserved. For it not to be, the particle would need to break up into a system, and then the preceding comment applies. SBHarris 20:17, 6 February 2009 (UTC)

you can't define mass using force, and define force using mass..

title.. --89.139.9.247 (talk) 14:03, 24 February 2009 (UTC)

That's precisely what I've been saying for years. I haven't studied this area of Wikipedia yet, so I'm not sure if they're actually using that sort of circular definition, but this does seem to be the general trend.
Brian Jason Drake 07:45, 3 May 2009 (UTC)
Here's a complaint that seems to fit with the current contents of the article: You can't define force and mass in terms of Newton's laws, having defined those laws in terms of force and mass.
Brian Jason Drake 08:05, 3 May 2009 (UTC)


F=gm. 3000 N=9.8m→ m= 306.122→ 300kg. F= Newtons. m=mass. g=Gravity constant.
—Preceding unsigned comment added by 166.214.170.106 (talk) 01:27, 10 December 2010 (UTC)


you can define mass using only acceleration if you imagine that all particles have equal mass.
then we would speak of 'acceleration fields' surrounding charged particles rather than 'fields of force'.
once you have done that then you can see how conglomerations of these particles interact and from that you get force.
Just granpa (talk) 23:13, 14 December 2010 (UTC)

Who are the readers of this article?

Are they people with a postgraduate qualification in physics? You'd think so, from the definition given in the introduction. I think we need to remember that, as far as most people know, the term "mass" isn't even ambiguous (except to the extent that it is confused with the term "weight"). Even an undergraduate physics student might be expected to know of only three meanings (inertial, active gravitational, passive gravitational).

Shouldn't we start with a simple explanation of what most people would associate the word "mass" with, and only then move on to some of the more exotic meanings (like "quantum mass", which everyone else only refers to as the "Compton wavelength", from what I've seen)? Brian Jason Drake 07:58, 3 May 2009 (UTC)

I took an executive decision! See the next section! HarryAlffa (talk) 16:07, 7 May 2009 (UTC)
See also the #Article is too technical section below. Brian Jason Drake 08:25, 22 September 2009 (UTC)

Brilliant - but not in the Lead

I moved the bullet point list of different "kinds" of mass. This is all way beyond the level of detail that should be in a lead, and it needs more than a quick scan for me to comprehend it, so forgive me if I put it somewhere which doesn't really fit, but I have to echo the sentiment behind the "Who are the readers of this article?" above - I can see a big question mark in the wrinkles of a forehead! :)

Lots of "simple" articles rely on the mass article to explain the difference between weight and mass, so I think it really important that this is the foremost part of the lead AND the first part of the body of the article. My previous comprehension of mass stopped at "the force required to accelerate...", learn something new everyday! As I do everyday and often say, else it wouldn't be an axiom!

PS I would love your analytical comment on the Solar system article which is currently undergoing a Featured Article Review - link in the Talk page. HarryAlffa (talk) 16:01, 7 May 2009 (UTC)

Solar System (note the capital "S") is a nice-looking article and now a featured article (obviously, any further comments belong on that article's talk page, not here). Brian Jason Drake 07:24, 10 May 2009 (UTC)

PPS I made a new section "Summary of concepts of mass", I'm not sure that's appropriate though? I also re-ordered the bullet points, from simple to ... well you know! HarryAlffa (talk) 16:05, 7 May 2009 (UTC)

PPPS Also moved the associated image {{Properties of mass}}, as being a bit too complicated to convey much meaning to most people! HarryAlffa (talk) 16:13, 7 May 2009 (UTC)

Changes

Brian Jason Drake and HarryAlffa,

Thanks, you two have brought up a valid and well stated point here. When I first encountered this “mass” article, the introduction was a rambling sequence of concepts that touched upon at least five different meanings of mass. However, the introduction didn’t sufficiently develop these five concepts to a point of clear coherence.

I had what seemed like a great idea at the time, of breaking the introduction down into the various concepts, and then succinctly developing each concept sufficiently so that a non-physicist would at least get a feel for the underlying principles and ideas. But doing so did cause the introduction to become unwieldy and inappropriate.

I like the new arraignment, however, I may add a little to the introduction to round out the meaning.Unitfreak (talk) 18:18, 7 May 2009 (UTC)

Hiya Unitfreak, (there is only one of you, or you have only one freak?)
I have an unhealthy fascination with measurement units. —Preceding unsigned comment added by Unitfreak (talkcontribs) 22:29, 7 May 2009 (UTC)
Do you blog? The latest idea goes at the top of the page? I'm guessing (with a very sparse data set) that you do and have put the very interesting potted history at the top of the page, or was it more a chronological thing? Anyway, hope you don't mind me swapping the order of the Lead paragraphs to introduce the subject first rather than the history. A fair number of articles link to mass for the reason of clearing it's Earth-bound synonimity with weight. HarryAlffa (talk) 21:19, 7 May 2009 (UTC)
The new arrangement is certainly better, but still confusing. What's all this "concept" stuff - I thought mass was a quantity? How can a "concept" have units? Can we get a simple answer as to what "mass" means in physics and engineering (I have tried to address this last point with my addition of the phrase "and is central to" in the first sentence about Newton's explanation.)? Brian Jason Drake 07:09, 10 May 2009 (UTC)
I think the order of the concepts is good now, but I would swap the first two (I would put "amount of matter" before "inertial mass"). Brian Jason Drake 07:07, 10 May 2009 (UTC)

Galileo

While this article rightly suggests that stories about Galileo's dropping things of the tower of Pisa is probably apocryphal, it claims that he did actually perform other experiments with inclined planes. This claim, too, is the subject of dispute. As far as I am aware, there is no consensus that Galileo did any sort of empirical work in this area. 158.143.86.159 (talk) 14:18, 22 June 2009 (UTC)

See Two new sciences. It's rather hard to doubt Galileo didn't do the inclinded plane water-clock experiments he reports. They've since been replicated, and at the time they were done using techniques nobody had ever used before. It would be even harder to report a fake experiment using novel techniques, and get the right answer, than to actually do the experiment! SBHarris 08:59, 24 June 2009 (UTC)

The LEDE/LEAD and the idiocy of our ancestors

I find this in the LEAD/LEDE (however you like to spell this):

As a final example, an athlete may perceive a painful stinging sensation when catching a hard ball with her bare hand. The athlete may associate this painful sting with the inertial mass of the ball, but in fact, if the ball were moving slower it would produce a less painful sensation. And furthermore, a softer ball would also cause less pain even if it had a similar mass to the hard ball and were moving at a similar speed. The painful sensation of catching a hard ball results from a combination of the balls mass, its speed, and its hardness.

For me, this takes up space, while saying little. It makes our ancestors sound like 2 year-olds exploring a playroom. Can we not simply remove it? Mass is closely associated with weight through recorded history-- they might as well be the same thing (and were considered so until Newton), and weight (a wonderful proxy for mass so long as you stay on the planet) was widely measured with scales, and so on, as long as we've had civilization. Weights of barley and metals were our first money, 5 millennia ago. The people who build the pyramids out of those big stone blocks did understand weight, and probably had a hint of inertia as a separate quantity, too (maybe I've just see DeMille's The Ten Commandments too many times). But it would have taken an unually uneducated or unintelligent human (certainly not an Egyptian or classical Roman or Greek, and probably not a Bushman either) to think that the pain of catching a rapidly moving object really was only a function of its weight ONLY. And just because weight is one factor, doesn't merit mention here in the LEDE about it. It's not that difficult to understand the more than weight is involved in damage from kinetic energy. I don't think our ancestors for recorded history have been fooled about the matter very much. They may not have fully comprehended inertia, but they did understand weight. SBHarris 08:40, 24 June 2009 (UTC)

Good critique
Since I wrote it, I suppose I have as much right as anyone to remove it. I was trying to emphasize the point that mass is an abstract concept drawn from a number of different physical phenomena. I thought weight, size, and inertia were good candidates since these are all part of normal human experience and are therefore easily understood.
I’ll remove it to see how well the article reads without it and to see how the community responds. Unitfreak (talk) 07:42, 29 June 2009 (UTC)
I think it would also be worth mentioning somewhere, if it can be sourced that the concepts of mass and weight have branched, with what turned out to be a rather unfortunate choice of terminology: The more important, more universal concept got a new name, and the long-established term was condemned to be used only for a relatively marginal concept. This led to a terminological split, with the exact sciences calling mass what ordinary language continues to call weight. A lot of people get this wrong and believe that the usage in physics has some kind of authority over ordinary language. But it's very obviously not true that someone who claims to have a "weight" of so many kilogrammes is talking about "weight" in the sense of physics. They are referring either the pre-split term, in a context in which it makes no sense to distinguish, or mass. Hans Adler 08:42, 29 June 2009 (UTC)
I think I have figured out where to do this.Unitfreak (talk) 05:56, 19 July 2009 (UTC)

Weight vs mass of atoms

User:Unitfreak changed the instances of "mass" to "weight" in the description of the combination of atoms to form molecules. This is a bad idea, in my opinion: using the word "weight" is confusing. What is the weight of an oxygen molecule on the moon? --Slashme (talk) 22:11, 8 August 2009 (UTC)

Good point, and thanks for the critique.
The concept of mass is over 300 years old, which is relatively young compared to the concepts of weight and amount, which are over 4000 years old. I originally wrote this section in response to Hans Adler’s suggestion above, to show that the concept of mass evolved from much older concepts. However, after completing the section I realized that I hadn’t been careful in my use of the terms mass and weight, so I went back and changed it to weight whenever the context didn’t absolutely require it to be mass. It is a section about “weight and amount” in an article about “mass”, so I think it could go either way, but I am satisfied with reverting back to the original.Unitfreak (talk) 00:16, 9 August 2009 (UTC)
Also, the chemical term is still atomic weight. They mean mass, but the most common term is still atomic weight. SBHarris 05:14, 9 August 2009 (UTC)

Suggest relocating much of the "Gravitational Mass" section

There is a large amount of information under the "Gravitational Mass" section that is at best tangentially related to the concept of mass. In particular, the sections "The Astrological Universe" and "The Monotheistic Universe" have almost nothing to do with the article topic. The word "mass" isn't even mentioned once in the "Astrological" section. Almost everything in the "Gravitational Mass" section lacks citation, and the majority of it seems more suited to an article on the history of gravity than an article on mass. It's all very well written, and clearly a lot of work went into it, but I don't think it actually belongs in this article. It's also a disproportionately large part of the overall article. There are many images and tables included that also have almost nothing to do with the concept of mass, such as the zodiac images and the table of "The Divine Planets". It looks like almost everything I'm referring to was added by User:Unitfreak over the past three months. There's some great work there, but I think much of it belongs somewhere else. James A. Stewart (talk) 09:39, 11 September 2009 (UTC)

Sometimes it is easier to write a long section and then trim it down. Thanks for your input James, the community has been patient with my “three month” development, and I am appreciative, but it is time to begin the reduction process.
As far as relocation goes, I probably won’t have enough editing time to be able to judiciously place it elsewhere, but everything that I have written (or copied from other Wikipedia articles) is in the pubic domain, so everyone is welcome to use it anywhere.
Unitfreak (talk) 05:30, 15 September 2009 (UTC)
Unitfreak, your user page says nothing about licensing. That could make things really confusing if we start relying on your claim above that this material is in the public domain. Brian Jason Drake 07:10, 18 September 2009 (UTC)
Sorry if that was poorly worded.
I consider my contributions to Wikipedia and Wikimedia to be donations to the public domain, so text that I have written and images that I have created are open for public use. (Although, some of my images were derivative works and are subject to original licenses)
Also, a percentage of the text that I placed here was summarized from other Wikipedia articles. Is there a protocol for doing this? I usually just include a link to the original article within the summarized text. Unitfreak (talk) 14:48, 18 September 2009 (UTC)
See User talk:Unitfreak#Licensing. Brian Jason Drake 08:38, 22 September 2009 (UTC)

Definition of "mass"?

Here is the first paragraph as it currently stands:

Mass (from Greek μάζα) is a concept used in the physical sciences to explain a number of observable behaviours, and in everyday usage, it is common to identify mass with those resulting behaviors. In particular, mass is commonly identified with weight. But according to our modern scientific understanding, the weight of an object results from the interaction of its mass with a gravitational field, so while mass is part of the explanation of weight, it is not the complete explanation.

This paragraph, particularly the first sentence, looks like nonsense to me. I think both others and I have asked before why "mass" was referred to as a "concept" instead of a "quantity". There is also no indication at all of what mass actually is (other than it having something to do with "weight", whatever that is – if "weight" is so important to the discussion of mass, we should have at least a brief definition of "weight" in this article too). The subsequent paragraphs just make things even more confusing! The entire introduction is also without a single citation.

The first section is headed "Units of mass". I think I have asked before, how can a "concept" have "units"? The second section is headed "Summary of concepts of mass", and if you are lucky enough to have made it this far, you will certainly stop reading here, unless you are a scientist.

Finally, a glance at the table of contents does not reveal any other section that might contain a useful definition. We have reviewed the article "mass", and still don't have the foggiest idea what "mass" actually is. Brian Jason Drake 07:39, 18 September 2009 (UTC)

See also the #Article is too technical section below. Brian Jason Drake 08:24, 22 September 2009 (UTC)

Invariant Mass?

Sbharris, I have learned from experience that most editors in Wikipedia have strong opinions and good reasons for doing the things that they do, and it is generally difficult to see things from another person’s perspective, so I am hesitant to write anything contrary at all. I also have personally appreciated your contributions and corrections both in the “mass” article and in other areas of Wikipedia, but the approach that you have taken in your additions to the “summary of concepts of mass” list is quite different from my own, and perhaps worth discussing.

In my opinion there is a distinction between those physical concepts which arise directly from experiments, and the mathematical formalisms which we as humans invent to describe our experimental results. When I originally created the “summary of concepts” list, my intent was to innumerate the families of experimental evidence for the existence of mass (mass being an abstract concept used to explain many distinct types of physical phenomena).

So my concern is the following: Does “invariant mass” represent a unique family of experimental evidence, or is it just a different mathematical formalism for describing the same old experimental results?

And secondly: does “quantum mass” represent a unique family of experimental evidence, or is it as you have stated “just re-writing, after dividing by Planck's constant”. I hope I haven’t offended you in writing this and I will respect your opinion and decisions.

I’m not opposed to including a discussion about mathematical formalisms, and how the meaning of mass is somewhat formalism dependant, but I would prefer to distinguish between formalisms and experiment.

Unitfreak (talk) 21:34, 19 September 2009 (UTC)

Thanks for the note. I would have left out "quantum mass" since it IS just a restating of the invariant mass formula in terms of quantum-useful units (frequency and wavenumber) instead of particle energy and momentum. But since it was in there, I left it, and pointed out that invariant mass is the macroscopic analog of this.

As is pointed out in the mass article, there are various definitions for mass, and relativistic mass (total energy/c^2) can be gotten along without, by simply using E/c^2 when you need to. Not only that, it's conserved but it's not invariant, so sometimes it's not as useful. Invariant mass is both conserved and invariant, and has the advantage of being what we usually measure when we MEASURE mass. Remember, when we measure masses of objects, we're measuring them in the COM frame, thus measuring invariant mass. BUT this is not sum of rest masses. More than 95% of the energy of a resting proton or neutron is kinetic and potential energies of quarks, and < 5% their rest masses. So invariant mass for systems becomes really important because it's a new conserved property, and it's most of what we see in lots of systems. Is that the question you're asking? Feel free to delete "quantum mass" for all I care. It's just invariant mass (see the Mandelstam variable s, which is just invariant m^2) and has no other special quantum significance that I know of.SBHarris 00:15, 20 September 2009 (UTC)

Thanks for the explanation, and again I hope I haven’t offended you in writing what I wrote. Unitfreak (talk) 04:32, 20 September 2009 (UTC)
I went ahead and made some changes to your edits. If you don’t agree with the direction I am taking this I will apologies later. Also, I have created a new list and added two new topics, one on Newton’s “classical mass” formalism and one on the “relativistic mass” formalism. If you are interested, please flesh out these topics as I have only given equations. Unitfreak (talk) 06:08, 20 September 2009 (UTC)

This article is a tad too high level

I feel that this article, especially in its initial paragraphs, is likely to confuse laymen and less educated readers. The description of what mass is, in a basic way, is verbose and cluttered, stylistically speaking, and highly technical. The use of analogies and simple explanations to ease the understanding of the concept for entry-level readers, especially schoolchildren who may be reading this article as part of their homework, in order to better grasp the concept of mass, would be desirable.

I would also lament the fact that many equations are given in notation only, with no explanation given so that the uninitiated might be able to grasp their significance.

Wgw2024 (talk) 01:09, 21 September 2009 (UTC)

See the #Article is too technical section below. Brian Jason Drake 08:22, 22 September 2009 (UTC)

Irrelevant material on Kepler's laws

There was a very detailed description of Kepler's laws which, while well-written, has little to do with mass. I've put it here if anyone wants to integrate it into other articles.

  1. ^ "Kepler's decision to base his causal explanation of planetary motion on a distance-velocity law, rather than on uniform circular motions of compounded spheres, marks a major shift from ancient to modern conceptions of science.... [Kepler] had begun with physical principles and had then derived a trajectory from it, rather than simply constructing new models. In other words, even before discovering the area law, Kepler had abandoned uniform circular motion as a physical principle." Peter Barker and Bernard R. Goldstein, "Distance and Velocity in Kepler's Astronomy", Annals of Science, 51 (1994): 59-73, at p. 60.
  2. ^ Koyré, The Astronomical Revolution, pp 199–202
  3. ^ Singer, Charles (1941), A Short History of Science to the Nineteenth Century, Clarendon Press  (page 217)
  4. ^ Weidhorn, Manfred (2005). The Person of the Millennium: The Unique Impact of Galileo on World History. iUniverse. p. 155. ISBN 0-595-36877-8. 
  5. ^ Finocchiaro (2007).