Talk:Particle decay

From Wikipedia, the free encyclopedia
Jump to: navigation, search
WikiProject Physics (Rated Start-class, High-importance)
WikiProject icon This article is within the scope of WikiProject Physics, a collaborative effort to improve the coverage of Physics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
Start-Class article Start  This article has been rated as Start-Class on the project's quality scale.
 High  This article has been rated as High-importance on the project's importance scale.
 

What Happens After Particle Decay?[edit]

What happens after an elementary particle decays? Is it just gone?

Yes, the initial particle is "just gone" - it has converted/transformed into its decay products. Jasondet (talk) 05:06, 13 September 2011 (UTC)

Energy or creation of another particle. You guys still don't know why some particles are more stable than others, and what's behind the decay. "It just does" isn't sufficient.98.165.15.98 (talk) 13:13, 23 July 2011 (UTC)

That is not a fair assessment. There is quite a good understanding of why some particles are more stable than others. For example, particles that can decay via strong interactions are much less stable than particles that can decay via weak interactions (due to the larger coupling constant for strong interactions), and heavier particles are in general less stable due to the larger phase space available for decay. Jasondet (talk) 05:06, 13 September 2011 (UTC)

Quarks final state may not always be up or down.[edit]

My comment will be specifically concerning the sentence:

This process continues until stable particles (electrons, or up and down quarks) are produced.

which might mislead some readers into thinking that up and down quarks are the final stable state for quarks. However this is not necessarily the case theoretically. See: [[1]]. I suggest this can be rectified by inserting the word usually before "electrons, or up ..." to account for such exceptions.

Billyziege 20:33, 8 March 2007 (UTC)Billyziege

independent of the stability of strange matter the list is inappropriate in the sense that a) pions, neutrons,... consist of up and down quarks and are unstable, b) photons and neutrinos are missing.

Missing symmetry factor?[edit]

In the formula for the decay rate (I think equivalent to what is called 'decay width' in particle phyisics) there should be a symmetry factor of 1/k! for every k identical particles in the final state. —Preceding unsigned comment added by 131.174.17.101 (talk) 12:04, 11 January 2008 (UTC)

Good catch, added. Jasondet (talk) 05:57, 13 September 2011 (UTC)

that short a time for nutron decay ????[edit]

You guys sure that a neutron decays (on average) in less than 900 seconds ? That would mean that atoms as we know them are all at least that unstable....

...Unless someone can theorize that they constantly recombine again inside the nucleus (which again would be strange, since expelled electrons might eventually escape). Or is a neutron viewed as "just a proton with a closely orbiting electron" thought to decay at the apogee (but that would make 900 seconds way too much)? —Preceding unsigned comment added by 70.54.202.152 (talk) 23:53, 16 September 2008 (UTC)

partial answer:
a) neutron =/= proton+electron; neutron <--> proton+electron+neutrino+energy.
b) neutron= 3 quarks, proton= different 3 quarks. (--> they are fairly complex inside).
c) It is often possible to stabilize an unstable species by giving it an energy-favorable home
which it has to leave the instant it decays. In an atomic nucleus,
the neutron and proton have "fallen" together under the pull of the "strong nuclear force".
(Physics knows 4 forces: gravity, electro-magnetism, strong_nuclear_force, weak_nuclear_force.)
d) think of it as tunneling out of a potential-well, for which probability depends greatly
on the height and thickness of the barrier wall. The electron & neutrino can tunnel out very rarely
(900sec is a long time for particles) but when placed in a low-energy neighborhood inside the nucleus,
it can't succeed for a really long time. jimswen (talk) 00:39, 25 March 2010 (UTC)
Yes, we are sure. The free neutron is unstable, with a lifetime indeed less than 900 seconds, because it is heavier than the sum of the masses of its decay products (proton + electron + electron antineutrino). However, neutrons bound inside nuclei may or may not be stable. Take, for example, the deuteron (the nucleus of 2H, containing 1 proton and 1 neutron). If the neutron inside the deuteron were to decay, you would be left with 2 protons (plus an electron and a neutrino). But the mass of the deuteron is smaller than the mass of two protons thanks to the nuclear binding energy, so that decay is energetically forbidden. Jasondet (talk) 06:18, 13 September 2011 (UTC)

the legenda for tan(theta-prime) formula is missing[edit]

Disambiguation requested[edit]

This article is using particle physics nomenclature which has a different meaning that particle decay in nuclear physics. Both concepts are perfectly valid, of course, but the meaning is not the same. I am presently editing the nuclear drip line page, so I may consider creating a nuclear particle decay page. However, in that case, I'd like at least a note at the top that say "did you mean nuclear particle decay" or so. More later, or I may do it myself. Thanks.DAID (talk) 13:01, 6 April 2010 (UTC)

example table badly labelled[edit]

concerning their spin, mesons are bosons. hence the separation of particles into lepton / meson / baryon / boson is inappropriate. the four terms are just not in the same category. suggest to change it to lepton / meson / baryon / _gauge_ boson.