# Talk:Principal ideal domain

WikiProject Mathematics (Rated Start-class, Mid-importance)
This article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of Mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
Mathematics rating:
 Start Class
 Mid Importance
Field: Algebra

## rating update

How about updating the rating of this article? This is no stub. I would say, it is B. What do you think? Spaetzle (talk) 13:59, 16 February 2012 (UTC)

## Proof for example

A proof of the example given of a PID that is not an ED would be nice. —Preceding unsigned comment added by Ecorcoran (talkcontribs) 1 December 2004

I'm sure it's given in Wilson, J. C. "A Principal Ring that is Not a Euclidean Ring." Math. Mag. 34-38, 1973... 129.97.45.36 09:42, 14 December 2006 (UTC)

## Structure theorem

might be nice to mention the structure theorem for PID's too. —Preceding unsigned comment added by 171.66.56.36 (talkcontribs) 23 March 2007

Which structure theorem? --345Kai (talk) 00:01, 25 March 2009 (UTC)

## Definition set off

A defintion of a PID that is set off from the rest of the paragraph would be nice also. —Preceding unsigned comment added by 209.43.8.56 (talk) 15:24, 3 September 2007 (UTC)

I rewrote the leading paragraphs: they contained a lot of stuff about rings and ideals in general: this is not the place for that. I put stuff more pertinent to PIDs, instead.--345Kai 04:43, 19 October 2007 (UTC)

## String of class inclusions is Dedekindist

I really don't like the following. It singles out the UFD property of PID as opposed to other properties, like one-dimensionality (Dedekind). --345Kai (talk) 23:54, 24 March 2009 (UTC)

Principal ideal domains fit into the following (not necessarily exhaustive) chain of class inclusions:

OK, so I got rid of the string of class inclusions, and replaced it with prose which is less partial.--345Kai (talk) 00:10, 25 March 2009 (UTC)

## Is $\mathbb{Z}_2^\infty$ a Principal ideal domain?

Moved from Wikipedia:Reference desk: Hkhk59333(talk) 08:51, 20 May 2010 (UTC)

Is $\mathbb{Z}_2^\infty$ a Principal ideal domain? Hkhk59333(talk) 08:51, 20 May 2010 (UTC)

This is a question for WP:RD/Math, not here. When you ask it there, make sure you explain what $\mathbb{Z}_2^\infty$ is supposed to mean. Algebraist 09:07, 20 May 2010 (UTC)